-
기계공학과 김정 교수팀, 국제 로봇/자동화 분야 세계적 권위의 저널 최우수논문상 수상
우리 대학 기계공학과 생체기계연구실(지도교수: 김정) 정화영, 풍 제유(Jirou Feng) 박사과정이 2022년 IEEE 국제 로봇/자동화 저널(RA-L, Robotics and Automation Letter) 최우수 논문상(Best paper award)을 수상했다고 2일 밝혔다.
최우수 논문상은 6월 1일 영국, 런던에서 주최된 국제 로봇자동화학회(ICRA2023, The 2023 International Conference on Robotics and Automation)에서 수여됐다. ICRA는 매년 개최되는 세계 최대 규모의 로봇 학회이며 RA-L은 최고 수준의 국제 로봇 학회들과 연계해 엄선된 논문을 출판하는 저널이다. 김정 교수 연구팀의 논문은 2022년 한해간 RA-L (Robotics and Automation Letter)에 출간된 1,100개 이상의 논문 중 편집자 위원회(Editorior board)에서 선정된 최우수 논문 5개 중 한 편으로 선정되어 상패와 함께 상금이 수여된다. (논문제목: 2.5D Laser-Cutting-Based Customized Fabrication of Long-Term Wearable Textile sEMG Sensor: From Design to Intention Recognition)
근전도 센서는 인간의 근육 활성도를 측정하는 수단으로 인간-기계 상호작용을 위한 착용형 시스템에 널리 사용되고 있다. 초기에는 근육 진단과 평가를 위해 의료계나 연구계서 국한된 환경에서만 사용돼왔으나 건강 모니터링이나 의수, 의족 등 더욱 일반적인 분야로 사용이 확장되고 있다.
이런 일상에서의 장시간 활용을 위해서는 사람이 착용하고 일상생활에 불편함이 없으면서도 일상에서의 움직임이나 변화가 신호에 영향을 주지 않는 센서의 개발이 필요하다. 기존의 상용 센서의 경우 단단한 소재로 제작되어 착용이 불편할 뿐 아니라 땀 발생에 취약한 성향을 보인다. 피부와 전극 사이에 전도성을 가진 땀 층이 생길 경우 전기적 단락이 발생할 수 있으며 물리적으로 센서가 미끄러질 가능성도 커져 결과적인 신호의 질에 큰 영향을 미친다. 또한 일반 사용자가 신호 수집이 필요한 정확한 위치를 파악하고 전극을 위치 시키는 것도 어렵다.
연구팀은 이러한 문제를 해결하고자 땀을 흡수하면서 착용자에게 불편함을 최소화한 천 기반의 대면적 센서를 효율적으로 그리고 착용자에 맞춤형으로 디자인하여 제작할 수 있는 방법에 대해 제시하고 센서 디자인부터 실제 사용하여 의도를 인식해내는 방법까지 전체적인 솔루션을 제공하였다. 기존에 천 전극 센서들이 많이 제시되어 왔지만 사용자 맞춤형, 대면적으로 제작하는 방법에 대한 제시에는 부족한 점이 많아 실제 활용 가능성이 불투명하였다. 하지만 본 연구에서는 컴퓨터 기반으로 디자인 된 패턴을 레이저 커팅을 통해 그대로 구현해낼 수 있는 2.5D 레이저 커팅 기반의 제작 방식을 소개하여 사용자 맞춤형으로 쉽게 디자인을 변경하고 제작해낼 수 있도록 하였다. 2.5D 레이저 커팅의 경우 레이저의 세기를 조절하여 레이저가 잘라내는 깊이를 다르게 함으로써 원하는 패턴 형성을 가능케 한다.
또한 전극 부분에 전도성 다공체를 활용함으로써, 전도성을 띠는 땀을 흡수하여 전해액으로 활용할 수 있도록 하여 땀이 발생하더라도 센서 성능 및 동작 분류 정확도에 변화가 거의 없도록 하였다. 그 결과 땀이 발생하는 운동 전후로도 유사한 신호 개형을 획득할 수 있었으며 땀의 여부와 관계없이 높은 동작 분류 정확도를 달성하였다.
연구진은 본 기술이 전극 크기와 개수에 상관없이 정밀하게 사용자 맞춤형으로 입는 형태의 센서를 제작할 수 있게 함으로써, 일상에서 사람의 의도 파악을 필요로 하는 응용 분야에 유용하게 활용될 것으로 기대했다. 예를 들면 의수, 의족의 경우 장시간 착용을 필요로 하는데 착용자에게 센서로 생기는 부담은 최소화하면서도 사람의 움직임과 가장 직접적인 연관이 있는 근육 신호 센서 사용을 통해 의수, 의족의 더욱 자연스러운 움직임을 가능케 해줄 수 있다.
김 교수는 “서비스 로봇을 위한 웨어러블 센서는 사람의 부착하는 부위의 형상에 맞게 가공하는 것이 산업화의 마지막 고비인데, 학생 연구원들이 좋은 아이디어를 내고 포기하지 않고 어려움을 극복하여 세계적으로 인정받는 좋은 결과를 냈다고 생각한다. 또한, 이번 상을 통해 자부심을 가지고, 더욱 큰 연구 결과를 얻을 수 있는 마중물이 되었으면 좋겠다.”라고 밝혔다.
한편, 이번 연구는 정부(과학기술정보통신부)의 지원으로 한국 연구재단-휴먼플러스융합연구개발 챌린지 사업의 지원을 받아 수행됐다.
2023.06.02
조회수 1252
-
전산학부 홍승훈 교수 연구팀, ICLR 2023 학술대회 한국인 최초 최우수논문상 수상
우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다.
ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다.
홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다.
전산학부 김동균 박사과정(제1 저자), 김진우 박사과정, 조성웅 석사과정과 마이크로소프트 리서치 아시아(Microsoft Research Asia)의 총 루오 박사(Chong Lou)로 구성된 홍승훈 교수 연구팀은 컴퓨터 비전 분야의 핵심 연구 주제인 ‘픽셀 레이블링 문제'를 획기적으로 적은 수의 데이터로 광범위하게 해결할 수 있는 범용적 방법론인 비주얼 토큰 매칭(Visual Token Matching) 기법을 제안해 최우수논문상을 받았다.
픽셀 레이블링은 물체 검출, 물체 분할, 자세 추정, 깊이 추정, 3차원 복원 등 컴퓨터 비전 분야의 거의 모든 핵심 문제를 광범위하게 아우르는 개념이다. 최근 10년간 신경망 기반의 기계학습 방법론이 적용되며 픽셀 레이블링의 다양한 세부 문제에서 괄목할만한 진전이 있었으나, 이러한 방법들은 수십만 개 이상의 방대한 학습 데이터를 요구하는 한계가 있었다.
홍승훈 교수 연구팀은 모든 종류의 픽셀 레이블링 문제에 대해 수십 개 이내의 적은 데이터로도 학습과 추론이 가능한 범용적인 퓨샷 학습 기법을 개발했고, 수많은 픽셀 레이블링 문제에서 기존 방법 대비 0.01% 이내의 데이터로도 비슷하거나 우수한 성능을 낼 수 있음을 입증했다.
홍 교수는 이번 연구를 통해 의료 영상과 같이 학습 데이터 수집이 병목이 되는 다양한 도메인에서 컴퓨터 비전 기술을 적용하는데 돌파구가 되기를 기대한다고 평가했다.
이번 연구를 주도한 김동균 박사과정은 적은 수의 데이터로 학습할 수 있는 범용적 기계학습 방법론을 계속 연구해 왔으며, 이번 연구의 이론적 토대가 되는 연구를 지난 ICLR에 출판한 바 있다. 김동균 박사과정은 이번 연구로 삼성 휴먼테크 논문대상에서 은상을 수상하기도 했다.
전산학부 홍승훈 교수는 "상을 받게 되어 영광이고, 이번 수상이 국내 기계학습 연구자들에게 자신감이 되어 한국에서 더 많은 도전적인 연구들이 나오는 데 도움이 된다면 기쁠 것 같다”라고 소감을 밝혔다.
2023.05.08
조회수 1254
-
강수 관측 오차범위 42.5% 줄인 알고리즘 개발
강수량의 정확한 파악은 지구의 물 순환을 이해하고 수자원과 재해 대응을 위해 중요하다. 강수량 추정을 위한 알고리즘에는 다양한 방법들이 제안되어 왔으며, 최근에는 기계학습을 이용한 방법들이 많이 제안되고 있다.
우리 대학 문술미래전략대학원(건설및환경공학과 및 녹색성장지속가능대학원 겸임) 김형준 교수와 도쿄대 등으로 구성된 국제 공동연구팀이 인공위성에 탑재된 마이크로파 라디오미터의 관측값을 이용해 지상 강수량을 추정하는 새로운 기계학습 방법을 제안했다고 25일 밝혔다. 연구팀은 기존의 방법과 비교해 전 강수량에 대해 오차(RMSE)를 최소 15.9%에서 최대 42.5%까지 줄이는 데 성공했다.
단순한 데이터 주도(data-driven)모델은 대량의 훈련 데이터가 필요하고 물리적인 일관성이 보장되지 않으며 결과의 원인 분석이 어렵다는 등의 문제가 있었다. 연구팀은 이번 연구에서 위성 강수량 추정에 대한 분야 지식을 명시적으로 포함함으로써 학습 모델 내의 상호 의존적인 지식 교환을 구현했다. 구체적으로, 멀티태스크 학습(multitask learning)이라는 심층 학습 기법을 사용해 강수 여부를 인식하는 분류 모델과 강수 강도를 추정하는 회귀 모델을 통합하고 동시에 학습시켰다.
이번 연구에서 제안한 기계학습 모델에는 이번에 포함된 메커니즘 외에도 다양한 물리적 메커니즘을 포함할 수 있다. 예를 들어, 비 또는 눈, 진눈깨비 등 강수 종류의 분류 및 상승 기류 또는 층상 구름 유형 등 강수를 일으키는 구름 유형의 분류를 포함함으로써 앞으로 추정의 정확도가 더욱 향상될 것으로 기대된다.
김형준 교수의 이번 연구 결과는 국제 학술지 ‘지구물리 연구 레터(Geophysical Research Letters)’에 지난 4월 16일 출판됐다. (논문명: Multi-Task Learning for Simultaneous Retrievals of Passive Microwave Precipitation Estimates and Rain/No-Rain Classification; doi:10.1029/2022GL102283)
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)와 정보통신기획평가원 인공지능대학원지원(한국과학기술원)지원을 받아 수행됐다.
2023.04.25
조회수 1512
-
방사선에도 문제없는 초저에너지 메모리 최초 개발
지상에서 잘 동작하던 반도체 메모리가 우주나 비행기 안에서 갑자기 오동작을 일으키는 일이 있는데, 이는 고고도에 존재하는 방사선 때문이다. 이 뿐만 아니라, 최근 자율 주행 운송 수단과 같이 사람의 안전이 중요한 장치에 사용되는 반도체 메모리도 대기 방사선에 의해 오동작할 확률이 있다는 연구 결과들이 보고되면서 방사선에 대해 높은 안정성을 갖는 메모리 소자의 중요성이 점차 증가하고 있다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 나노종합기술원(원장 이조원) 강민호 박사와의 협업을 통해 우주 부품 수준의 내방사선 특성을 가지면서도 일반적인 비휘발성 플래시 메모리보다 30,000배 이상 프로그래밍 에너지가 낮은 나노 전자 기계식 비휘발성 메모리 소자를 세계 최초로 개발했다고 28일 밝혔다.
전기및전자공학부 이용복 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 2023년 1월호에 출판됐다. (논문명: Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory). (Impact Factor : 17.690). (https://www.nature.com/articles/s41467-023-36076-0)
반도체 메모리 소자들은 동작 원리상 근본적으로 방사선에 취약해, 이를 보완하기 위해서는 복잡한 회로나 추가적인 데이터 프로세싱을 수반하는데 그 과정에서 많은 에너지가 소모된다. 즉, 일반적인 반도체 메모리 소자들은 내방사선과 낮은 동작 에너지를 동시에 만족하는 것이 매우 어렵다는 것을 의미한다.
윤준보 교수 연구팀은 방사선에 원천적으로 강인한 특성을 가진 나노 전자 기계 기술(Nano Electro Mechanical System, NEMS)을 활용해 고에너지 방사선에도 강인할 뿐만 아니라 매우 낮은 프로그래밍 에너지를 가지고, 전원이 공급되지 않아도 저장된 정보를 유지할 수 있는 비휘발성 메모리 소자를 세계 최초로 개발했다.
연구팀은 반도체 메모리를 사용하는 대신, 나노 크기의 매우 작은 기계 구조에 전기 신호를 가함으로써 나노 기계 구조체가 실제로 움직여서 하부 전극에 붙고 떨어지는 방식을 사용하였다. 또한, 매우 낮은 프로그래밍 에너지를 달성하기 위해 파이프-클립 스프링 구조와 구부러진 외팔보 구조로 구성된 상부 전극을 도입했으며, 특히 파이프-클립 모양의 나노 기계 구조에 전류를 가해 열을 내는 구동 방식을 통해 프로그램된 구조체가 초기 상태로 복구할 수 있도록 하여 반복적인 프로그램 동작에도 낮은 프로그래밍 에너지를 유지할 수 있도록 하였다.
연구진은 나노종합기술원의 반도체 장비·시설 인프라를 활용해 8인치 웨이퍼 수준의 대면적 기판에 신뢰적으로 소자를 제작했고, 제작한 나노 전자 기계식 비휘발성 메모리의 프로그래밍 에너지는 차세대 메모리들과 비교했을 때도 매우 낮은 수준이었다. 또한, 기계적인 움직임을 기반으로 하는 동작 방식 덕분에 고에너지 방사선 조사 후에도 누설 전류 증가, 동작 전압 변화, 비트 오작동 등의 성능 저하 없이 우수한 내방사선 특성을 보였다.
연구개발에 주도적으로 참여한 이용복 박사과정은 “이번 연구 결과는 연구팀이 보유한 나노 전자 기계 설계 기술과 나노종합기술원의 첨단 공정 기술이 만나 내방사선 특성과 낮은 동작 에너지 소모를 동시에 만족하는 비휘발성 메모리를 세계 최초로 구현했다는 점에서 중요한 의미를 가지고, 해당 기술은 우주 환경에서의 인공지능, 초안정성 자율주행 시스템 등 내방사선과 높은 에너지 효율성이 필요한 다양한 미래 응용 분야에서 핵심 기술이 될 것” 이라고 말했다. 또한, “세계 차세대 반도체 시장에서 우리나라가 메모리 원천 기술을 선도할 수 있도록 기여하고 싶다”며 앞으로의 계획을 밝혔다.
해당 기술과 관련해 미국, 중국, 대만, 한국 등에 6건의 특허가 출원돼 있다.
한편, 이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업과 삼성전자의 지원을 받아 수행됐다.
2023.02.28
조회수 1845
-
극미량의 액체를 정밀하게 측정하고 분석할 수 있는 새로운 플랫폼 개발
우리 대학 기계공학과 이정철 교수 연구팀이 마이크로히터와 유동 채널이 내장된 미세전자기계시스템(MEMS) 소자를 이용해 극미량의 유체에 대한 열전달 관련 측정과 공정을 개발할 수 있는 새로운 실험 플랫폼인 열원-미소채널 통합 공진 센서 (heater-integrated fluidic resonator, 이하 HFR)를 개발했다고 21일 밝혔다.
2015년, 벤처 기업 `테라노스'의 피 한 방울로 질병을 진단할 수 있다는 주장은 정밀 분석을 위해 많은 혈액이 필요하던 미국 전역에 큰 충격으로 다가왔다. 결국 허구로 밝혀진 이 사건은 아주 적은 양의 샘플을 이용해 정밀한 측정을 수행하고자 하는 현대 사회의 요구 사항을 단적으로 보여주는 예시다.
마이크로 유체 채널이 통합된 센서는 많은 연구자에 의해 꾸준히 개발되고 있다. 하지만 아직 큰 크기를 갖는 상용화된 센서들(마이크로/나노 공정의 적용이 필요 없는)에 비해 적은 정확도를 갖는다는 한계가 있었다.
이에 연구팀은 밀도/질량 측정에만 주로 사용되지만 오히려 소형화될수록 높은 정확도를 갖는 장점이 있는 기계 공진 센서에 주목했다. 지금까지의 유체 채널 통합 공진 센서는 신뢰할 만한 결과의 확보를 위해 동일한 온도에서의 측정이 필요했다. 반면 이정철 교수팀은 이번 연구에서 온도를 자유자재로 제어하며 고정확도의 공진 측정을 병행함으로써 밀도/질량 측정 이상으로 다양한 현상과 물리량을 분석하는 아이디어를 제시했다.
연구팀은 개발한 플랫폼을 이용해 20pL(피코 리터) 이하 액체의 열전도도, 밀도, 비열을 동시에 측정할 수 있는 방법을 제시하고 1,000개 데이터를 1분 이내에 수집함으로써 고정확도의 계측을 구현했으며, 마이크로채널 내부의 비등 상변화 현상을 다중 공진 주파수로 측정해 기존의 상변화 현상 분석 기법에 비해 이력(hysteresis)과 기포의 초기 발생 시점을 더 명확하게 관측했다.
또한 연구팀은 마이크로채널 자유단에 노즐이 있는 열원-미소채널 통합 공진 센서를 사용해 전열 분무 현상을 유도하고 토출 공정을 공진 주파수로 실시간 관측할 수 있는 방법을 제시함으로써, 이전까지는 불가능했던 고속 카메라와 같은 장비 없이 노즐 자체의 측정만을 이용한 미립화 액적 토출 공정 모니터링을 구현했다. 이는 나노/마이크로 입자 및 세포 측정 분야에만 국한되어 사용되었던 극미량의 질량 측정 기술을 물리 화학적 측정 센서, 나노 패터닝 공정 제어, 상변화/열전달 제어 등 다양한 분야의 연구자들이 응용할 수 있도록 아이디어를 제시하고 그 활용 가능성을 검증한 데에 의의가 있다.
이번 연구는 국제학술지 `나노 레터스(Nano Letters)'에 지난 8월 18일 자에 온라인 게재됐으며 10월 호의 표지 논문(front cover)로 선정됐다.
이번 연구는 유체 채널 내에 가열 및 온도 측정의 기능성을 통합한 이번 연구와 비슷한 접근법으로 자성(magnetic) 혹은 압전(piezoelectric) 기술을 채널 공진 센서 기술과 융합해 자기장(magnetic field) 혹은 음향장(acoustic field)을 정밀하게 분석할 수 있는 플랫폼 등으로의 아이디어 확장이 가능하다. 측정 기법의 새로운 패러다임을 제시하는 이번 연구는 기존의 상용화된 장비들을 대체할 수 있는 고성능 측정 장비의 개발 등을 촉진할 것으로 기대된다.
한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업, 그리고 산업기술평가관리원의 시장선도를 위한 한국 주도형 K-센서(K-Sensor) 기술개발 사업의 지원을 받아 수행됐다.
2022.11.21
조회수 2475
-
기계공학과 박용화 교수 연구팀, 대한기계학회-LG전자 퓨처홈테크 챌린지 대상, 동상 수상
우리 대학 기계공학과 인간-기계 상호작용 연구실 (지도교수: 박용화) 정원호 연구원과 임대근 박사과정이 “제 1회 대한기계학회-LG전자 퓨처 홈 테크 챌린지 (KSME-LG Future Home Tech. Challenge)”에서 각각 대상과 동상을 수상했다. 본 수상은 대한기계학회와 LG전자가 공동으로 주관해, 미래기술사회의 혁신을 선도할 창의적이고 실용적인 아이디어를 공모했고 대한기계학회와 LG전자 사내 전문가가 심사했다.
대상을 수상한, 정원호 연구원은 가전 제품에 적용할 DX 관련 기술 내의 Prognostics & Diagnostics 기술로, 전력계통신호를 이용한 회전체 고장 진단 기술을 제안했다. (아이디어 제목: 전류 이미지화 기법을 이용한 회전체 고장진단 기법 개발). 해당 기술은 기존 값비싼 진동센서를 대체하고, 센서 설치에 대한 이슈를 해결하여, 다양한 회전체 작동조건에서도 운용될 수 있는 고장진단 기법으로서, 고장진단 기술의 현장 적용 문제점을 해결할 수 있다. 제안된 방법은 노이즈가 심하거나 다양한 작동조건으로 운용되는 모터뿐만 아니라, 에어컨 압축기, 공조기 등에도 공통적으로 적용할 수 있을 것이라 기대되어, 상용화 관점에서 높은 점수를 받았다.
동상을 수상한, 임대근 박사과정은 가전 제품에 적용할 DX 관련 기술 내의 CAE, VPD(가상제품설계) 관련 기술로, 드럼세탁기 상태진단 모델을 구현하기 위한, 전산역학 기반의 디지털트원 모델 기술을 제안했다 (아이디어 제목: 드럼세탁기 상태진단을 위한 인공지능 및 전산역학 기반의 디지털트윈 개발). 해당 디지털 트윈 기술은 다양한 인정시험 및 설계변경을 가상에서 수행하기 때문에 시제품 제작 및 테스트를 위한 직접경비와 설계변경에 필요한 인력들의 업무시간 단축과 같은 간접경비의 절감을 기대할 수 있다. 제안된 방법은 드럼 세탁기 상태진단 모델을 탑재함으로써 고객에게 상태정보를 제공하고, 사전에 고장 대비 및 이상부품 수급 및 수리일정과 관련된 스케줄링 서비스를 통하여 고객만족을 달성할 수 있다.
해당 시상을 위해, 2022년 대한기계학회 학술대회(개최지: ICC제주)에서 LG전자 오세기 부사장과 대한기계학회 이재종 회장이 시상식에 참여했다. 수상 혜택으로 정원호 연구원과 임대근 박사과정은 각각 500만원과 50만원의 상금, LG전자 H&A본부와의 산학연계 공동연구 그리고 LG전자 입사가산점 혜택이 부여된다.
링크: http://ksme-lg.ksme.or.kr/default.asp
2022.11.14
조회수 1838
-
수면 및 단기 기억력 조절을 위한 초소형 초음파 자극·뇌파 측정 시스템 개발
우리 대학 전기및전자공학부 이현주 교수, 한국뇌연구원 김정연 박사 공동연구팀이 소형 동물에서 초음파 뇌 자극과 뇌파 측정이 동시에 가능한 초소형 시스템을 개발했다고 9일 밝혔다. 수면 상태에 따라 실시간으로 초음파 뇌 자극이 가능한 해당 기술을 이용해, 연구팀은 비 급속 안구 운동(NREM, Non-rapid-eye Movement) 수면 시 전전두엽(PFC, Prefrontal cortex)을 실시간으로 자극해 수면 및 단기 기억력 조절이 가능함을 밝혔다.
☞ 미세 전자 기계 시스템(Micro Electro Mechanical Systems, MEMS): 마이크로 단위의 기계적 구조물과 전자 회로가 결합된 초소형 정밀 기계 제작 기술. 전자(반도체) 기술·기계 기술·광 기술 등을 융합해 마이크로 단위의 작은 부품과 시스템을 설계·제작하고 응용하는 기술을 의미한다.
☞ 초음파: 사람이 들을 수 있는 청각 영역에서 벗어난 고주파수 내역의 음파(>20 kHz).
☞ 뇌파: 저주파수 대역의 뇌 전기신호. 비침습적으로 두개골이나 두피에서 전반적인 뇌 활동을 뇌파로 측정할 수 있다. 영문으로 EEG라고 부른다.
☞ 전전두엽: 전두엽에서 인간 고유의 정신 기능을 담당하는 앞부분이다. 행동을 주시하고, 감독하고, 이끌고, 지시하고, 집중시키는 일을 하는 부위다.
이번 연구에서 개발된 초소형 초음파 자극 및 뇌파 측정 시스템은 기존의 마취가 필요한 시스템과는 달리 자유롭게 행동하는 쥐에 장기간 동시 자극과 측정을 할 수 있다. 초음파 자극 소자는 미세 전자 기계 시스템(이하 MEMS, Micro Electro Mechanical Systems)의 실리콘 공정을 활용했기 때문에 매우 정밀하고 초소형으로 제작할 수 있으며 대량생산이 가능하다. 초경량의 해당 시스템을 향후 다양한 뇌 질환 동물 모델에 적용한다면, 여러 뇌 질환에 대한 초음파 뇌 자극의 효과를 평가할 수 있을 것으로 기대된다.
기존 신경 자극 기술과는 달리 초음파는 수술 없이 뇌 심부의 국소적인 작은 영역까지도 자극할 수 있어, 저강도 집속 초음파 치료 기술이 주목받고 있다. 최근 저강도 집속 초음파 기술의 치료 효과와 유효성에 관한 연구가 활발히 진행되고 있다. 초음파를 뇌 또는 인체에 조사했더니, 알츠하이머병, 파킨슨병, 간질, 비만, 관절염 등이 호전되는 연구들이 다수 발표되고 있다.
신경 자극의 효능을 확인하는 방법으로는 생체 내 신호 측정과 행동 관찰을 들 수 있다. 그러나 이를 질병 모델이 많이 존재하는 소형 동물에서 구현하기는 쉽지 않다. 기존의 초음파 자극 기술은 부피가 커서 움직이는 생쥐에 사용이 불가능하거나 작동할 때 생기는 잡음 신호로 동시 전기 생리 신호 측정이 어렵다. 특히, 생쥐처럼 작은 동물에서 장기간으로 초음파 자극을 주면서 생체 내 반응을 실시간으로 측정하는 시스템이 없었다. 따라서 소형 동물에 인가되는 초음파 자극 실험은 통상적으로 짧게 자극 후 즉각적인 반응을 보거나 마취 상태에서 여러 차례 자극을 인가하고 장기적인 반응을 보는 연구들이 주를 이루고 있다.
이현주 교수팀은 그간 이런 문제를 해결하기 위해 MEMS 기반의 초소형 초음파 소자(CMUT, Capacitive Micromachined Ultrasound Transducer) 연구를 지속해서 수행해왔는데, 이번 연구에서 뇌파 신호 측정 및 실시간 수면 분석 기술을 접목해, 뇌의 현재 상태에 따라 자극을 주는 맞춤형, 폐루프 자극 시스템을 개발했다. 폐루프 자극 알고리즘은 6초 단위로 수면 단계를 실시간으로 분석해 비 급속 안구 운동(NREM, Non-rapid-eye Movement) 수면 단계일 때 초음파 자극을 전달한다. 이 시스템은 잡음 신호 없이 자극과 측정이 동시에 가능하다. NREM 상태 시 10시간 동안 수면 박탈 쥐의 전전두엽을 자극한 결과, 단기 공간 기억력이 보호되고 급속 안구 운동(REM, Rapid-eye Movement) 수면량이 증가함을 보였다.
연구팀은 현재 이 신기술을 고도화하기 위해 뇌 단일 영역의 매우 작은 부위를 자극할 수 있는 후속 시스템을 개발하고 있다. 국소 부위 자극을 통해 향후 정밀한 수면 단계 조절이 가능하게 된다면, 수술 없이 비침습적으로 수면 질환, 알츠하이머병, 파킨슨병 등의 뇌 질환 치료의 길이 열릴 것으로 연구팀은 기대하고 있다.
이현주 교수는 "초음파는 태아 영상화에도 활용될 만큼 안전한 인체 조사 기술 중 하나인데, 인체 내부 깊숙이까지 전달되며 펴지지 않고 집중 조사가 가능해 치료를 위한 비수술적 인체 조사 기술로 매우 매력적인 기술이다ˮ라고 말했다. "하지만, 전임상 자극 시스템의 부재로 현재 초음파 자극의 효능 평가 연구가 부족한 상황이며, 이번에 개발한 시스템을 많은 뇌과학 연구팀들이 활용해 초음파의 다양한 치료 효과를 밝혀낼 수 있기를 바란다ˮ라고 전했다.
전기및전자공학부 이현주 교수 연구팀의 조예현 박사과정, 그리고 한국뇌연구원 김정연 박사 연구팀이 주도하고 기초과학연구원 김성기 단장, 한국과학기술연구원 이병철 박사, 우리 대학 생명과학과 서성배 교수가 참여한 이번 연구 결과는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'誌 10월 19일 字에 게재됐으며 출판사 와일리(Wiley)의 리서치 헤드라인(Research Headline) 논문으로 선정돼 이현주 교수와 김정연 박사 인터뷰가 어드밴스드 사이언스 뉴스(Advanced Science News)에 11월 1일 실렸다. (논문명: General-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents)
한편, 이 연구는 과학기술정보통신부 한국연구재단 차세대지능형반도체 사업의 지원으로 수행됐다.
2022.11.09
조회수 2721
-
상상만으로 원하는 방향으로 사용가능한 로봇 팔 뇌-기계 인터페이스 개발
우리 대학 뇌인지과학과 정재승 교수 연구팀이 인간의 뇌 신호를 해독해 장기간의 훈련 없이 생각만으로 로봇 팔을 원하는 방향으로 제어하는 뇌-기계 인터페이스 시스템을 개발했다고 24일 밝혔다.
서울의대 신경외과 정천기 교수 연구팀과 공동연구로 진행된 이번 연구에서 정 교수 연구팀은 뇌전증 환자를 대상으로 팔을 뻗는 동작을 상상할 때 관측되는 대뇌 피질 신호를 분석해 환자가 의도한 팔 움직임을 예측하는 팔 동작 방향 상상 뇌 신호 디코딩 기술을 개발했다. 이러한 디코딩 기술은 실제 움직임이나 복잡한 운동 상상이 필요하지 않기 때문에 운동장애를 겪는 환자가 장기간 훈련 없이도 자연스럽고 쉽게 로봇 팔을 제어할 수 있어 앞으로 다양한 의료기기에 폭넓게 적용되리라 기대된다.
바이오및뇌공학과 장상진 박사과정이 제1 저자로 참여한 이번 연구는 뇌공학 분야의 세계적인 국제 학술지 `저널 오브 뉴럴 엔지니어링 (Journal of Neural Engineering)' 9월 19권 5호에 출판됐다. (논문명 : Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface).
뇌-기계 인터페이스는 인간이 생각만으로 기계를 제어할 수 있는 기술로, 팔을 움직이는 데 장애가 있거나 절단된 환자가 로봇 팔을 제어해 일상에 필요한 팔 동작을 회복할 수 있는 보조기술로 크게 주목받고 있다.
로봇 팔 제어를 위한 뇌-기계 인터페이스를 구현하기 위해서는 인간이 팔을 움직일 때 뇌에서 발생하는 전기신호를 측정하고 기계학습 등 다양한 인공지능 분석기법으로 뇌 신호를 해독해 의도한 움직임을 뇌 신호로부터 예측할 수 있는 디코딩 기술이 필요하다.
그러나 상지 절단 등으로 운동장애를 겪는 환자는 팔을 실제로 움직이기 어려우므로, 상상만으로 로봇 팔의 방향을 지시할 수 있는 인터페이스가 절실히 요구된다. 뇌 신호 디코딩 기술은 팔의 실제 움직임이 아닌 상상 뇌 신호에서 어느 방향으로 사용자가 상상했는지 예측할 수 있어야 하는데, 상상 뇌 신호는 실제 움직임 뇌 신호보다 신호대잡음비(signal to noise ratio)가 현저히 낮아 팔의 정확한 방향을 예측하기 어려운 문제점이 오랫동안 난제였다. 이러한 문제점을 극복하고자 기존 연구들에서는 팔을 움직이기 위해 신호대잡음비가 더 높은 다른 신체 동작을 상상하는 방법을 시도했으나, 의도하고자 하는 팔 뻗기와 인지적 동작 간의 부자연스러운 괴리로 인해 사용자가 장기간 훈련해야 하는 불편함을 초래했다.
따라서 팔을 뻗는 상상을 할 때 어느 방향으로 뻗었는지 예측하는 디코딩 기술은 정확도가 떨어지고 환자가 사용법을 습득하기 어려운 문제점이 있다. 이 문제가 오랫동안 뇌-기계 인터페이스 분야에서 해결해야 할 난제였다.
연구팀은 문제 해결을 위해 사용자의 자연스러운 팔 동작 상상을 공간해상도가 우수한 대뇌 피질 신호(electrocorticogram)로 측정하고, 변분 베이지안 최소제곱(variational Bayesian least square) 기계학습 기법을 활용해 직접 측정이 어려운 팔 동작의 방향 정보를 계산할 수 있는 디코딩 기술을 처음으로 개발했다.
연구팀의 팔 동작 상상 신호 분석기술은 운동피질을 비롯한 특정 대뇌 영역에 국한되지 않아, 사용자마다 상이할 수 있는 상상 신호와 대뇌 영역 특성을 맞춤형으로 학습해 최적의 계산모델 파라미터 결괏값을 출력할 수 있다.
연구팀은 대뇌 피질 신호 디코딩을 통해 환자가 상상한 팔 뻗기 방향을 최대 80% 이상의 정확도로 예측할 수 있음을 확인했다.
나아가 계산모델을 분석함으로써 방향 상상에 중요한 대뇌의 시공간적 특성을 밝혔고, 상상하는 인지적 과정이 팔을 실제로 뻗는 과정에 근접할수록 방향 예측정확도가 상당히 더 높아질 수 있음을 연구팀은 확인했다.
연구팀은 지난 2월 인공지능과 유전자 알고리즘 기반 고 정확도 로봇 팔 제어 뇌-기계 인터페이스 선행 연구 결과를 세계적인 학술지 `어플라이드 소프트 컴퓨팅(Applied soft computing)'에 발표한 바 있다. 이번 후속 연구는 그에 기반해 계산 알고리즘 간소화, 로봇 팔 구동 테스트, 환자의 상상 전략 개선 등 실전에 근접한 사용환경을 조성해 실제로 로봇 팔을 구동하고 의도한 방향으로 로봇 팔이 이동하는지 테스트를 진행했고, 네 가지 방향에 대한 의도를 읽어 정확하게 목표물에 도달하는 시연에 성공했다.
연구팀이 개발한 팔 동작 방향 상상 뇌 신호 분석기술은 향후 사지마비 환자를 비롯한 운동장애를 겪는 환자를 대상으로 로봇 팔을 제어할 수 있는 뇌-기계 인터페이스 정확도 향상, 효율성 개선 등에 이바지할 수 있을 것으로 기대된다.
연구책임자 정재승 교수는 "장애인마다 상이한 뇌 신호를 맞춤형으로 분석해 장기간 훈련을 받지 않더라도 로봇 팔을 제어할 수 있는 기술은 혁신적인 결과이며, 이번 기술은 향후 의수를 대신할 로봇팔을 상용화하는 데에도 크게 기여할 것으로 기대된다ˮ고 말했다.
2022.10.24
조회수 2504
-
투명 스마트 복합 필름 상용화에 성공
우리 대학 기계공학과 이승섭 교수와 전기전자공학부 윤준보 교수 공동 연구팀이 `투명 스마트 복합 필름' 상용화에 성공했다고 19일 발표했다.
`투명 스마트 복합 필름'은 투명한 필름 혹은 유리판 위에 안테나, 열선, 발광 기능이 복합적으로 구현된 것으로, 시야 방해 없이 원활한 5G 통신, 고효율 방열, 정보 전달 기능이 동시에 가능하다.
한편, 자동차부품 기업인 ㈜티에이치엔은 5G 안테나 기업인 ㈜센서뷰와 함께 관련 기술을 이용해 자동차용 제품 개발을 진행 중이며 시제품이 2022년 현대자동차 테크데이에 선정됐다고 발표했다.
이승섭 교수 연구팀과 윤준보 교수 연구팀은 서로 다른 방법으로 투명 필름 연구를 수행했는데, 이승섭 교수팀은 투명 전도성 필름 기반의 안테나와 열선을 연구했고, 윤준보 교수팀은 초소형 3차원 패턴을 이용한 투명 발광을 연구했다.
이승섭 교수팀이 개발한 투명 전도성 필름은 투명도 90% (PET 필름 포함), 면저항 0.3옴/sq, 헤이즈 1%의 세계 최고 성능을 가지고 있다.
투명 안테나 필름은 짧은 주파수 특성으로 많은 안테나를 요구하는 5G 특화망을 대상으로 개발됐는데, 스마트 빌딩과 팩토리는 물론 자율주행 및 커넥티드 모빌리티 등에 적용이 예상된다.
투명 열선 필름은 저전력 고효율 방열이 가능해 유리창 서리 제거, 외부 카메라 시야 확보, 겨울철 라이더 적용은 물론 복사열을 이용한 실내 난방 등에 광범위하게 응용될 수 있다.
윤준보 교수팀의 투명 발광 필름은 가장자리에 배치된 LED에서 도광된 빛이 필름의 한쪽 방향으로만 나오는 특징을 지니는데, 이미 `매직라이팅 시트' 라는 상표로 제품화됐다.
투명 발광 필름은 투명해서 하늘을 볼 수 있다가 밤이 되면 실내 조명으로 변하는 `라이팅 썬루프', 차량 유리에서 특정 모양으로 빛이 나오도록 하는 `라이팅 유리' 등 미래 모빌리티 조명을 주 시장으로 하고 있으며, 비전 검사 장비에 설치할 수 있는 `투명 비전 조명' 으로 출시된 바 있다.
이승섭 교수와 윤준보 교수는 관련 기술을 바탕으로 각각 ㈜제이마이크로와 ㈜멤스룩스를 창업했다.
연구를 주도한 이승섭 교수는 "세계 최고 성능을 가진 투명 전도성 필름에 5G 통신, 고효율 방열 등이 가능하도록 개발된 이번 투명 스마트 복합 필름의 상용화를 통해 차량, 실내 난방뿐만 아니라 나아가 스마트 빌딩, 스마트 팩토리, 자율주행 등 광범위하게 응용이 가능할 것으로 기대된다ˮ라고 설명했다.
2022.10.19
조회수 3895
-
KAIST 최초의 마이크로 디그리, 데이터사이언스 대학원 '기초 기계학습' 개설
우리 대학이 기초 기계학습 마이크로 디그리를 개설한다. '마이크로 디그리(Micro Degree, 학점당 학위제)'는 교과목 분야별로 지정된 최소 학점을 단기간에 집중 이수한 학생들에게 정규 학위와 구분되는 별개의 미니 학위를 주는 제도다. 데이터사이언스 대학원(책임교수 문일철)이 주관하는 이번 프로그램은 우리 대학에 최초로 개설된 마이크로 디그리다. 기계학습의 근본적 원리를 기초 수준에서 다루는 교육과정으로 학생과 관련 분야 종사자들의 능력 계발을 위해 마련됐다. 기초 프로그래밍(파이썬) 능력과 대학교 1학년 수준의 수학(행렬, 미적분학) 지식을 바탕으로 진행되는 교과과정을 이해할 수 있는 학부 재학생 및 현업 실무자라면 누구나 수강할 수 있다. 오는 21일까지 이메일로 지원서를 제출할 수 있으며, 별도의 선발 과정 없이 일정 수준의 성취도를 얻은 수강생들에게 KAIST 총장 명의의 이수증이 수여된다. 마이크로 디그리 과정은 이달 26일부터 내년 4월까지 64시간의 온라인 수업과 서울에 있는 KAIST 도곡 캠퍼스에서 진행되는 48시간의 대면 수업을 혼합한 방식으로 진행된다. ▴데이터 구조 및 분석 ▴데이터사이언스 프로그래밍 ▴인공지능 및 기계학습 개론 ▴강화학습 등 데이터 구조 기초를 포함한 기초 기계학습 및 강화학습의 이론과 실무가 융합된 4개 교과목이 운영된다.
기술의 이면을 알고 싶은 학생들과 현장 실무의 어려움을 극복하려는 관련 분야 종사자들이 이론 분야의 근본 원리를 이해하고 이를 바탕으로 기계학습의 방법론 적용 및 문제 해결 능력을 향상할 수 있는 지식을 전달할 예정이다. 문일철 KAIST 데이터사이언스 책임교수는 "데이터사이언스 기술을 산업현장에 적용했을 때 발생하는 문제의 원인을 규명하거나 해결하기 위해서는 핵심 이론 및 적용에 대한 체계적 교육이 필요하다"라고 강조했다. 이어, 문 책임교수는 "KAIST의 첫 마이크로 디그리로 기초 기계학습의 이론 및 기술 과목을 개설해 대한민국 데이터 기반 산업의 발전 및 미래 사회 변화에 중요하게 이바지할 교육을 청년층에 제공하고 더 나아가 KAIST의 실용적인 학풍이 대중에게도 전달되기를 바란다"라고 전했다.
이번 마이크로 디그리를 이수하면 KAIST 데이터사이언스 대학원 입학 시 졸업요건 학점으로 인정되며, KAIST는 인공위성·반도체 분야 등에도 마이크로 디그리 과정 개설하는 방안을 검토 중이다.
KAIST 기초 기계학습 마이크로 디그리에 관한 자세한 내용 및 수강료 관련 정보는 데이터사이언스대학원 홈페이지( gsds.kaist.ac.kr )에서 확인할 수 있다.
2022.09.08
조회수 2564
-
유해가스 및 와인을 구별하는 전자 코 뉴로모픽 반도체 모듈 개발
우리 대학 전기및전자공학부 최양규 교수와 기계공학과 박인규 교수 공동연구팀이 `인간의 후각 뉴런을 모방한 뉴로모픽 반도체 모듈'을 개발했다고 4일 밝혔다. 인간의 뇌, 시각 뉴런, 그리고 촉각 뉴런을 모방한 뉴로모픽 반도체 모듈을 각각 개발하는 데 성공했던 연구팀은, 인간의 후각 뉴런과 같이 가스 성분을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 반도체 모듈을 통해 뉴로모픽 기반의 전자코(eletronic nose)를 구현할 수 있음을 처음으로 보였다.
전기및전자공학부 한준규 박사과정과 강민구 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 2022년 4월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Artificial olfactory neuron for an in-sensor neuromorphic nose)
인공지능을 이용한 후각 인식 시스템은 높은 정확도로 가스를 인식할 수 있어 환경 모니터링, 음식 모니터링, 헬스케어 등 다양한 분야에 걸쳐 유용하게 사용되고 있다. 하지만 이러한 시스템 대부분은 CPU와 메모리가 분리된 구조인 폰노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 데이터가 CPU와 메모리 사이를 이동할 때 높은 전력이 소모된다. 또한 센서에서 CPU로 데이터가 전송될 때 필요한 변환 회로에서도 추가 전력 소비가 발생한다. 따라서 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다.
한편, 생물학적 후각 시스템은 감각 세포 자체에서 스파이크 형태로 감각 정보를 전달하고, 이를 뇌에서 병렬적으로 처리함으로써 낮은 전력 소비만으로 가스를 판별할 수 있다. 따라서 저전력 후각 시스템을 구축하기 위해, 생물학적 후각 시스템을 모방해 센서 단에서 스파이크 형태로 정보를 전달하는 `인 센서 컴퓨팅(In-Sensor Computing)' 기반 뉴로모픽 후각 시스템이 주목을 받고 있다. 이러한 뉴로모픽 후각 시스템을 구현하기 위해서는 인간의 후각 뉴런처럼 화학 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 가스 센서는 이러한 기능을 수행할 수 없다.
연구팀은 반도체식 금속산화물 기반 가스 센서와 단일 트랜지스터 기반 뉴런 소자를 이용해, 가스를 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 반도체 모듈을 개발했다. 연구팀은 제작된 뉴로모픽 반도체 모듈을 바탕으로 유해가스를 구분할 수 있는 가스 인식 시스템과 와인을 구분할 수 있는 전자 소믈리에 시스템을 구축했다. 특히, 여러 가지 가스 분자가 섞여 있어 구분이 힘든 와인을 뉴로모픽 시스템을 이용해서 구분할 수 있음을 보인 것에서 그 의미가 크다.
연구를 주도한 한준규 박사과정은 "개발된 뉴로모픽 반도체 모듈은 전자코에 적용되어 사물인터넷(IoT) 분야, 환경 모니터링, 음식 모니터링, 헬스케어 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 국민위해인자대응기술개발사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2022.07.04
조회수 3604
-
초대규모 인공지능 모델 처리하기 위한 세계 최고 성능의 기계학습 시스템 기술 개발
우리 연구진이 오늘날 인공지능 딥러닝 모델들을 처리하기 위해 필수적으로 사용되는 기계학습 시스템을 세계 최고 수준의 성능으로 끌어올렸다.
우리 대학 전산학부 김민수 교수 연구팀이 딥러닝 모델을 비롯한 기계학습 모델을 학습하거나 추론하기 위해 필수적으로 사용되는 기계학습 시스템의 성능을 대폭 높일 수 있는 세계 최고 수준의 행렬 연산자 융합 기술(일명 FuseME)을 개발했다고 20일 밝혔다.
오늘날 광범위한 산업 분야들에서 사용되고 있는 딥러닝 모델들은 대부분 구글 텐서플로우(TensorFlow)나 IBM 시스템DS와 같은 기계학습 시스템을 이용해 처리되는데, 딥러닝 모델의 규모가 점점 더 커지고, 그 모델에 사용되는 데이터의 규모가 점점 더 커짐에 따라, 이들을 원활히 처리할 수 있는 고성능 기계학습 시스템에 대한 중요성도 점점 더 커지고 있다.
일반적으로 딥러닝 모델은 행렬 곱셈, 행렬 합, 행렬 집계 등의 많은 행렬 연산자들로 구성된 방향성 비순환 그래프(Directed Acyclic Graph; 이하 DAG) 형태의 질의 계획으로 표현돼 기계학습 시스템에 의해 처리된다. 모델과 데이터의 규모가 클 때는 일반적으로 DAG 질의 계획은 수많은 컴퓨터로 구성된 클러스터에서 처리된다. 클러스터의 사양에 비해 모델과 데이터의 규모가 커지면 처리에 실패하거나 시간이 오래 걸리는 근본적인 문제가 있었다.
지금까지는 더 큰 규모의 모델이나 데이터를 처리하기 위해 단순히 컴퓨터 클러스터의 규모를 증가시키는 방식을 주로 사용했다. 그러나, 김 교수팀은 DAG 질의 계획을 구성하는 각 행렬 연산자로부터 생성되는 일종의 `중간 데이터'를 메모리에 저장하거나 네트워크 통신을 통해 다른 컴퓨터로 전송하는 것이 문제의 원인임에 착안해, 중간 데이터를 저장하지 않거나 다른 컴퓨터로 전송하지 않도록 여러 행렬 연산자들을 하나의 연산자로 융합(fusion)하는 세계 최고 성능의 융합 기술인 FuseME(Fused Matrix Engine)을 개발해 문제를 해결했다.
현재까지의 기계학습 시스템들은 낮은 수준의 연산자 융합 기술만을 사용하고 있었다. 가장 복잡한 행렬 연산자인 행렬 곱을 제외한 나머지 연산자들만 융합해 성능이 별로 개선되지 않거나, 전체 DAG 질의 계획을 단순히 하나의 연산자처럼 실행해 메모리 부족으로 처리에 실패하는 한계를 지니고 있었다.
김 교수팀이 개발한 FuseME 기술은 수십 개 이상의 행렬 연산자들로 구성되는 DAG 질의 계획에서 어떤 연산자들끼리 서로 융합하는 것이 더 우수한 성능을 내는지 비용 기반으로 판별해 그룹으로 묶고, 클러스터의 사양, 네트워크 통신 속도, 입력 데이터 크기 등을 모두 고려해 각 융합 연산자 그룹을 메모리 부족으로 처리에 실패하지 않으면서 이론적으로 최적 성능을 낼 수 있는 CFO(Cuboid-based Fused Operator)라 불리는 연산자로 융합함으로써 한계를 극복했다. 이때, 행렬 곱 연산자까지 포함해 연산자들을 융합하는 것이 핵심이다.
김민수 교수 연구팀은 FuseME 기술을 종래 최고 기술로 알려진 구글의 텐서플로우나 IBM의 시스템DS와 비교 평가한 결과, 딥러닝 모델의 처리 속도를 최대 8.8배 향상하고, 텐서플로우나 시스템DS가 처리할 수 없는 훨씬 더 큰 규모의 모델 및 데이터를 처리하는 데 성공함을 보였다. 또한, FuseME의 CFO 융합 연산자는 종래의 최고 수준 융합 연산자와 비교해 처리 속도를 최대 238배 향상시키고, 네트워크 통신 비용을 최대 64배 감소시키는 사실을 확인했다.
김 교수팀은 이미 지난 2019년에 초대규모 행렬 곱 연산에 대해 종래 세계 최고 기술이었던 IBM 시스템ML과 슈퍼컴퓨팅 분야의 스칼라팩(ScaLAPACK) 대비 성능과 처리 규모를 훨씬 향상시킨 DistME라는 기술을 개발해 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표한 바 있다. 이번 FuseME 기술은 연산자 융합이 가능하도록 DistME를 한층 더 발전시킨 것으로, 해당 분야를 세계 최고 수준의 기술력을 바탕으로 지속적으로 선도하는 쾌거를 보여준 것이다.
교신저자로 참여한 김민수 교수는 "연구팀이 개발한 새로운 기술은 딥러닝 등 기계학습 모델의 처리 규모와 성능을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다.
이번 연구에는 김 교수의 제자이자 현재 GraphAI(그래파이) 스타트업의 공동 창업자인 한동형 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 16일 미국 필라델피아에서 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표됐다. (논문명 : FuseME: Distributed Matrix Computation Engine based on Cuboid-based Fused Operator and Plan Generation).
한편, 이번 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2022.06.20
조회수 2984