-
인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체 개발
우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다.
전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single Thin-Film Transistor Synapses Over Single Thin-Body Transistor Neurons by Monolithic Vertical Integration). ‘Advanced Science’는 재료과학, 물리학, 화학, 생명과학, 엔지니어링 분야의 기초 및 응용 연구를 다루는 학제 간 오픈 액세스 저널이다. (impact factor : 17.521)
뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 뉴로모픽 하드웨어를 구현하기 위해서는 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다.
연구팀은 단일 박막 트랜지스터(thin-film transistor) 기반 시냅스 소자를 단일 트랜지스터 기반 뉴런 소자 위에 3차원 방식으로 수직 집적해, 높은 집적도와 전력 효율을 가지는 3차원 집적 뉴로모픽 반도체를 개발했다. 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자를 제작하기 위해, 엑시머 레이저 어닐링(excimer laser annealing) 기법을 활용했다. 또한, 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자의 내구성을 향상시키기 위해, 소자 내부의 줄열(Joule heat)을 이용한 자체 어닐링 기법도 제안했다. 이러한 뛰어난 내구성을 바탕으로, 이벤트 카메라(event camera)를 기반으로 제작된 손동작 기반의 수화 (手話) 패턴을 높은 성공률로 인식할 수 있음을 보였다.
2023.09.21
조회수 460
-
팬데믹을 예견할 의사공학자 양성을 꿈꾸며
최근 25년간 노벨 생리의학상 수상자의 37%, 글로벌 상위 10개 제약회사 대표 과학책임자의 70%가 의사과학자다. 코로나를 겪으며 한국에서도 임상 현장과 최신 연구를 연결하는 가교 역할을 하는 의사과학자 양성이 더욱 절실해졌다. 우리 정부도 바이오·디지털헬스 글로벌 중심국가로의 도약을 위해 의사과학자 육성사업을 국정과제로 추진하고 있으며, 과학적 소양을 바탕으로 임상의 과제를 해결하는 의사과학자가 의료계와 바이오산업의 화두로 떠오르고 있다.
우리 대학은 글로벌 바이오헬스사업을 선두할 MD-데이터 공학자, AI 전문가 등의 의사공학자 양성을 위해 그간 추진해온 의과학대학원의 성공적인 운영을 12일 밝혔다. 이와 함께 그간의 성과를 바탕으로 바이오의료 분야에 특화된 과학자 및 공학자 양성을 위해 과학기술의학전문대학원을 설립할 계획이라고 밝혔다.
우리 대학은 2004년 의과학대학원을 설립하여 의사들이 첨단과학 연구역량을 습득할 수 있는 혁신적인 교육환경을 마련하고 현재까지 184명의 의사과학자를 양성하여 산·학·연·병 생태계에 새로운 활력을 불어넣는데 성공하였다. 국내 이공계대학 최초로 의사를 대상으로 선도 연구자 양성을 위한 의사과학자 양성과정(박사학위)을 시행하여 지난 30여년 간 우리나라 의사과학자 양성의 절반 이상을 담당했다.
KAIST 의과학대학원에서는 의학, 생명과학, 자연과학, 공학 등 다양한 학문적 배경을 지닌 28명의 교수진이 연간 총액 330억 원이 넘는 규모의 다학제 융합연구와 교육을 수행하고 있다. 이러한 연구 환경은 우수한 실적으로 이어져, 연간 100편 이상의 SCI급 논문이 의과학대학원에서 발표된다. 논문의 질도 세계 최고 수준이다. 발표 논문의 FWCI(논문영향력지수)의 평균도 3.59에 달한다. 참고로 세계 상위 20개 대학의 FWCI 평균값은 2.06이다.
의과학대학원의 연구가 질적으로 높은 수준을 유지하는 데는 설립 이후 KAIST의 연구풍토로 자리잡은 ‘문제해결형’ 접근법이 큰 역할을 했다. 해결할 과제와 목표를 명확하게 정의하고, 현재 보유한 자원을 고려하여 해결 전략을 수립하는 공학적 방법론이다. 대표적인 사례가 코로나19 팬데믹 기간 중 의과학대학원 신의철 교수가 수행한 연구다. 신 교수 연구팀은 코로나19 대응 방안을 모색하는 과정에서 바이러스에 대한 인체 면역반응의 특성을 규명하여 코로나19 환자의 치료 전략을 마련하는 데 기여했다.
KAIST 특유의 공학적인 방법론 덕분에 의과학대학원은 임상 현장에서 해답을 찾기 어려운 문제를 해결하는 데 탁월한 역량을 보인다. 김진국 교수는 데이터 과학을 기반으로 진단 프로세스를 설계하여 유전체 분석으로 희귀질환을 조기에 찾아내 환자맞춤형 치료제를 개발하는 방법을 제시했다. 김 교수의 성과는 난치병 치료에 중대한 돌파구를 마련하여 세계적으로 주목받았다. 의과학대학원 박종은 교수 연구팀은 인공지능을 활용한 빅데이터 분석을 바탕으로 신개념 암 치료에 활용할 수 있는 ‘스마트 면역세포’를 개발하는 데 성공했다. 박 교수 연구팀의 출발점 역시 데이터과학과 인공지능이었다. 연구팀은 KAIST 내 협력 연구를 통해 수백만 개의 세포에 대한 유전자 발현 데이터베이스를 구축하고, 종양세포와 정상세포 간 유전자 발현 양상 차이를 찾아내는 딥러닝 알고리즘을 개발했다.
의과학대학원의 질병문제 해결에 집중한 혁신적인 연구는 의과학대학원 교수와 졸업생의 딥테크 기반의 바이오 벤처 창업으로 이어지고 있다. 대표적인 사례로 의과학대학원 주영석 교수와 이정석 교수는 지놈인사이트를 공동으로 창업하였다. 지놈인사이트는 세계 최초로 전장유전체분석(WGS·Whole Genome Sequencing) 기반 암 정밀진단 플랫폼을 만들고, 샌디에이고로 본사를 이전하여 적극적인 해외 진출에 나서고 있다. 최근에는 WGS 기반 암 정밀진단 서비스 ‘캔서비전(CancerVision)’을 미국에서 출시하였다. 이외에도 김필한 교수(아이빔테크놀로지(주), CEO), 이정호 교수(소바젠(주), CTO) 등 약 10명의 교원이 6개 기업을 창업했으며, 의과학대학원을 졸업한 의사과학자들도 온코크로스 등 다양한 창업 사례를 내고 있다. 온코크로스는 인공지능을 기반으로 한 의약개발 솔루션 기업이다.
의과학대학원의 우수한 연구 성과는 의과학대학원 교수와 학생에 대한 높은 평가로 이어지고 있다. 의과학대학원의 고규영 교수(특훈교수)는 2023년 대한민국 최고 과학기술인상을 수상하였고, 신의철 교수와 함께 기초과학연구원(IBS) 연구단장으로 활동중이다. 의과학대학원 교수 세 명이 한국연구재단의 개인기초 리더과제에 선정되었고, 네 명이 서경배과학재단의 신진연구자 지원 프로그램에 선정되었다. 그리고 졸업생들은 지난 수년간 분쉬의학상과 아산의학상의 젊은의학자부문, 연강학술상등 젊은과학자에게 수여하는 상의 다수를 수상하였다.
의과학대학원은 KAIST가 보유한 탄탄한 글로벌 네트워크를 바탕으로 국제적인 교류에도 본격적으로 나섰다. 지난 4월에는 미국 보스턴에서 세계적인 연구중심 병원인 하버드의대 매사추세츠 종합병원(MGH) 및 바이오테크놀로지 기업 모더나(Moderna)와 MOU를 체결했다. 이를 바탕으로 향후 보스턴에 소재한 바이오의료 분야 기관들과 의과학자 양성을 위한 공동연구, 인적교류 등 국제 협력을 이어나갈 계획이다.
우리 대학 의과학대학원이 적지 않은 성과를 낳았지만 여전히 우리나라의 의사과학자는 부족하다. 현재 우리나라의 의사과학자는 전체 의사의 1% 미만으로 미국 등 선진국과 비교하면 턱없이 적다. 게다가 임상을 위한 기초 이론을 연구하는 의사과학자를 넘어, 진단이나 치료의 효율적인 프로세스와 방법론을 개발하는 의사공학자의 역할에 대한 인식이 커지고 있지만 의사공학자의 양성은 거의 전무하다. 바이오헬스 산업생태계를 구축하려면 두 부류의 인재가 모두 필요하다. 특히 AI와 빅데이터를 이용한 연구와 진단 및 치료제 개발이 일반화될 것이 자명함을 고려하면 의학에 대한 공학적인 접근이 가능한 의사공학자의 양성을 더욱 시급하다.
이미 산업계에서도 지각변동이 일어나고 있다. 바이오의료는 더 이상 제약회사나 대형병원의 전담분야가 아니다. ‘디지털 의료’라는 현재의 바이오의료 패러다임 전환을 이끄는 주축은 다름아닌 애플, 구글, IBM 아마존, NVIDIA와 같은 이른바 ‘빅테크’다. 국내에서도 삼성 등 IT 분야의 대기업들이 이러한 흐름에 동참하여 바이오의료 분야에 적극적으로 진출하려 한다. 그러나 우리나라에서는 과학과 공학을 기반으로 바이오의료의 문제를 해결하려는 의사과학자와 의사공학자가 부족해서 세계적인 흐름을 따라잡기 쉽지 않다.
이에 우리 대학은 메디컬 산업의 대전환에 대비하고자 새로운 도전을 준비하고 있다. 그간 축적해 온 의사과학자 양성 시스템과 노하우를 기반으로 ‘과학기술의학전문대학원(과기의전원)’의 설립을 추진하고 있다. 과기의전원은 의학교육 단계부터 과학 및 공학적 소양을 갖춘 의사공학자를 양성하고 이후 박사과정을 통해 MD-데이터공학자·AI전문가·전자공학자·신약개발자 등으로 양성하는 것을 목표로 하고 있다.
우리 대학이 과기의전원을 신설하려는 이유는 현재의 의과학대학원만으로 미래의 바이오의료 환경에 완벽하게 대응하기는 어렵기 때문이다. 의과학대학원은 기존의 의과대학을 졸업한 의사를 대상으로 운영되는 프로그램으로 생명과학분야의 연구에는 탁월한 성과를 냈지만, 공학분야에서는 아직 성과가 미약하다. 이는 의과학대학원 연구자의 학술적 배경이 의학이다 보니 지금처럼 전공자도 따라잡기 벅찰 만큼 빠르게 발전하는 공학적 자원을 자유자재로 활용하기는 어렵고, 최신 기술적 성과를 신속하게 의료 분야에 접목하기는 어렵기 때문이다. 과기의전원은 과학과 공학을 기반으로 의학적 소양을 갖춘 인재를 양성하는 데 목표를 둔다. 의학교육단계부터 시작하는 MD-PhD 융합 과정을 운영하려는 이유가 여기에 있다.
과기의전원은 이처럼 급변하는 기술과 산업 트렌드를 바이오의료와 실시간으로 조화시키는 특화된 인재를 양성함으로써 바이오의료의 최신 연구 성과가 산업계에 조기에 안착하는 데 중요한 역할을 할 것이다. 무엇보다 학부 때부터 공학 기반 의료라는 특화된 교육을 실시한다면 과학/공학박사와 임상의 훈련 과정을 모두 거쳐야 했던 기존의 의사과학자 양성과정에 비해 훨씬 신속하게 바이오의료 산업에 필요한 전문가를 공급할 수 있을 것이다.
한편으로는 우수한 과학기술 인재에게 ‘공학과 의학의 융합’이라는 새로운 진로를 제시하여 의료 분야를 지망하는 우수한 인재들이 자신의 관심사를 좇아 연구자의 길을 선택하는 데 기여할 것으로 기대된다. 이처럼 기존의 의학이나 공학과 전혀 다른 융합교육을 받은 혁신 인재들이 바이오헬스 산업의 주역으로 성장한다면 우리나라도 연간 2조달러가 넘는 글로벌 바이오 헬스산업 시장의 퍼스트무버(First-mover)에 당당히 이름을 올릴 수 있을 것이다.
2023.09.12
조회수 612
-
반도체공학대학원 출범
우리 대학이 30일 오전 반도체 국가첨단전략산업을 이끌어갈 최고급 연구개발 인력을 양성하는 KAIST 반도체공학대학원 출범식을 개최했다.
이날 행사에는 이광형 총장, 이석봉 대전광역시 경제과학부시장, 이용필 산업통상자원부 첨단산업정책관, 박흥수 나노종합기술원 원장과 반도체 산학 관계자 등이 함께 참석해 현판 제막식을 열고 반도체공학대학원 개원을 축하했다.
우리 대학은 2023년 5월 반도체특성화대학원 지원사업에 선정됐다. 5년간 연평균 45명 이상의 석·박사 과정 학생을 모집해 반도체 소자·소재 및 패키징 분야에서 고급 석·박사 인재를 양성할 계획이다.
이를 위해, 전기및전자공학부·신소재공학과·생명화학공학과·기계공학과·물리학과 등 5개 학과 32명의 교원이 초학제적으로 참여한다. 또한, 삼성, SK하이닉스 등의 종합반도체 기업을 포함해 10개의 반도체기업이 컨소시엄을 구성한다. 반도체공학대학원은 설계-시뮬레이션-공정·소자제작·평가에 이르는 전주기 반도체 교육·연구 환경을 구축하고 산학연 기술교류·프로젝트 연구진행·교육 협업을 통한 산학연 교류 및 인재 연계 구조를 마련한다. 미래 반도체 산업 변화에 대응하기 위한 실습장비를 확충해 반도체 전문 실험 및 실습을 체계적으로 수행할 수 있는 환경도 구축한다. 이에 더해, 반도체 기술의 융합화·복합화 등에 따른 산업계 수요를 바탕으로 더 창의적이고 도전적인 인재 양성 교과과정을 운영할 예정이다.
이날 행사에서는 우리 대학 내의 반도체 연구 역량을 결집하고 미래 반도체 분야를 선도하기 위한 '반도체혁신연구소'의 출범식도 동시에 진행됐다.
이광형 총장은 "KAIST 반도체공학대학원은 세계 최고 수준의 반도체 연구와 교육 역량을 바탕으로 혁신적 반도체 고급 인재를 양성하고 학제 간 융합과 산학연 컨소시엄을 통해 창의적인 초격자 반도체 연구 혁신을 이루는 교두보가 될 것"이라고 말했다.한편, KAIST 반도체공학대학원은 2023년 석·박사과정 학생 선발을 마치고 가을학기부터 교육과정을 운영한다.
2023.08.30
조회수 1523
-
김학성 명예교수, 2023 효소공학상 수상
우리 대학 생명과학과 김학성 명예교수가 2023년 효소 공학상(Enzyme Engineering Award) 수상자로 선정됐다고 24일 밝혔다. 본 상은 효소공학(Enzyme Engineering) 분야 최고 권위 국제학회 상으로 2년마다 개최되는 국제 효소공학 학회(Enzyme Engineering Conference)에서 수여된다. 시상식은 오는 10월 1일부터 6일까지 싱가포르에서 개최되는 제27차 학회에서 수상 강연과 함께 진행된다.
효소(Enzyme)는 반응 특이성과 효율이 매우 높은 단백질의 일종으로 생체 내에서 생명 현상을 유지하는 데 가장 중요한 역할을 수행하는데, 예를 들면 유전자 복제, 신호전달, 대사, 단백질 합성 등 다양한 과정에 필수적으로 작용한다. 산업적으로 효소는 의약품 및 정밀/범용 화학제품 생산에 사용되고 있으며 최근에는 환경오염과 지구 온난화를 해결하고자 효소 기반 공정 개발 연구가 전 세계적으로 진행되고 있다.
그러나, 자연계에 존재하는 수많은 종류의 효소는 생체 내 반응에 적합하도록 진화되었기 때문에 이를 실제 산업적으로 사용하는 데 많은 제약이 있다. 이를 해결하고자 생명공학, 화학기업, 대학과 연구소에서 응용 목적에 맞는 효소 개발에 집중하고 있다.
김학성 교수는 지난 30여 년 동안 구조 기반 설계, 방향적 진화 및 컴퓨터 기반 설계를 통해 목적에 맞는 기능을 갖는 효소를 효율적으로 창출할 수 있는 기반 기술을 성공적으로 개발했다. 김 교수팀이 개발한 기반 기술은 산업용 효소, 단백질 신약, 합성 생물학, 바이오 화학, 생유기 합성 분야에서 광범위하게 활용될 수 있는 원천 기반 기술이다.
김 교수는 일련의 연구를 세계 최고 학술지인 ‘사이언스(Science)’를 비롯한 ‘네이쳐 케미컬 바이올로지(Nature Chemical Biology)’, ‘네이쳐 커뮤니케이션즈(Nature Communications)’, ‘앙게반테 케미(Angewandte Chemi.)’, ‘어드밴스드 사이언스(Advanced Science)’ 등의 저명 학술지에 발표하였고 60편의 특허를 등록하는 등 국제적으로 괄목할 업적을 이뤘다. 또한, 효소를 이용한 정밀화학 및 의약품 생산 기술을 산업체에 기술 이전 하여 관련 산업 발전에 크게 기여했다.
김학성 교수는 이러한 공로를 인정받아 관련분야의 최고 권위 국제 학회상인 ‘효소 공학상(Enzyme Engineering Award)’ 수상자로 선정됐다.
상을 수상한 김학성 교수는 “연구실 실적이 국제적으로 인정받아 권위 있는 상을 받게 되어 매우 영광이고, 연구실 졸업생들과 재정적 지원을 해주신 기관에 감사를 드린다. 앞으로 다양한 분야에서 효소의 산업적 응용을 확대시키는데 노력을 할 것이다”라고 수상 소감을 밝혔다.
2023.08.24
조회수 1007
-
미생물로 나일론을 친환경적으로 만든다
기후 변화와 환경 문제가 심각해짐에 따라 나일론을 포함한 다양한 고분자들의 친환경 생산에 관한 관심이 빠르게 증가하는 추세다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 한태희 박사가 `나일론-5의 단량체인 발레로락탐을 생산하는 미생물 균주 개발'에 성공했다고 10일 밝혔다.
발레로락탐(valerolactam)은 나일론-5 및 나일론 6,5의 중요한 단량체다. 나일론-5와 나일론 6,5는 역사가 가장 오래된 합성섬유인 나일론의 일종으로, 나일론-5는 탄소 5개짜리 단량체로 이루어진 고분자, 나일론 6,5는 탄소 6개와 5개짜리의 두 가지 단량체로 이루어진 고분자를 말한다. 이는 우수한 가공성과 가볍고 질긴 특징으로 인해 의류뿐 아니라 배드민턴 라켓 줄, 어망, 텐트, 그리고 기어 부품 등 산업 전반에 활용되고 있다. 또한 단량체란 이러한 고분자를 만드는 재료이며, 단량체들을 서로 연결해 고분자를 합성하는 원리다.
석유 화학 기반의 화학적 발레로락탐 생산은 극한 반응조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. 이러한 문제를 해결하기 위해 발레로락탐을 친환경적이며 고효율로 생산하는 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 시스템 대사공학은 효과적인 미생물 균주 개발을 위해 필요한 핵심 전략으로, 이상엽 특훈교수가 창시한 연구 분야다.
이상엽 특훈교수 연구팀은 미생물의 대사회로를 조작하는 기술인 대사공학을 이용해 아미노산 생산에 주로 사용되는 세균의 일종인 코리네박테리움에 발레로락탐 생산 합성 대사회로를 구축했다. 이로써 바이오매스인 포도당을 탄소원으로 사용해 고부가가치의 발레로락탐을 생산하는 미생물 균주를 개발했다고 연구팀 관계자는 설명했다.
이 교수팀은 2017년 대장균을 대사공학적으로 개량해 발레로락탐을 세계 최초로 생산하는 전략을 제시한 바 있다. 하지만 그 당시 낮은 발레로락탐 생산능과 부산물 생성과 같은 한계가 있었다.
이번 연구를 통해 미생물의 발레로락탐 생산능을 향상시키고 개발한 균주에 추가로 부산물 제거를 위한 시스템 대사공학 전략을 도입했다. 주요 부산물 생산에 관여하는 유전자를 제거하고, 유전자 스크리닝을 통해 부산물이자 전구체인 5-아미노발레르산(5-aminovaleric acid)을 발라로락탐으로 전환시켜서 부산물 생성을 줄이는데 성공했다.
연구팀은 또한 5-아미노발레르산을 발레로락탐으로 전환하는 유전자를 게놈 상에 여러 번 삽입하는 전략을 통해 발레로락탐 생산을 위한 대사 흐름을 강화하고, 세계 최고 농도(76.1g/L)의 발레로락탐을 고효율로 생산하는 데 성공했다. 이는 기존 대비 6.17배 높은 수치다.
해당 연구 결과는 국제 학술지인 `대사공학지(Metabolic Engineering)'에 지난 7월 12일 게재됐다.
※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 한태희(한국과학기술원, 제1저자) 포함 총 2명
연구에 참여한 한태희 박사는 “미생물을 기반으로 나일론의 단량체인 락탐을 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 기술을 활용해 미생물 기반의 바이오 고분자 산업이 석유화학 기반의 화학산업을 대체하는 데에 한 단계 앞으로 나아갈 수 있을 것”이라고 밝혔다.
이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’의 지원을 받아 수행됐다.
2023.08.10
조회수 1101
-
대체육 풍미 향상 등 미생물 세포공장 제시
수십 년 동안 전 세계 인구 증가에도 불구하고 기후변화 및 이상기후의 심화로 인한 식량 생산성 감소와 전쟁 등의 국제적 분쟁으로 인한 식량 공급망의 파괴는 식량부족과 영양 불평등 문제를 심화시키며 세계적인 식량 위기를 가시화하고 있다. 그러나 아이러니하게도 다른 한편에서는 환경과 지속가능성에 대한 인식이 고조됨에 따라 보다 친환경적이면서 고품질을 자랑하는 식품 및 미용품에 대한 수요 증가가 동시에 관찰되고 있다. 미생물은 이러한 다면적인 문제들을 동시에 풀어낼 수 있는 열쇠로서 주목받고 있다.
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘식품 및 화장품 생산을 위한 미생물의 시스템 대사공학’논문을 발표했다고 26일 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 생명공학 리뷰(Nature Reviews Bioengineering)’의 초청으로 준비한 것으로 동료심사를 거쳐 온라인 게재됐다.
※ 논문명 : Systems metabolic engineering of microorganisms for food and cosmetics production
※ 저자 정보 : 최경록(한국과학기술원, 제1 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 2명
시스템 대사공학은 석유에 대한 의존도가 높은 기존의 화학산업을 대체할 바이오산업의 핵심인 미생물 세포공장을 보다 효과적으로 개발하기 위해 KAIST 이상엽 특훈교수가 창시한 연구 분야다. 연구진은 시스템 대사공학 전략을 적용함으로써 대체육의 풍미와 색감을 향상할 수 있는 천연물질인 헴철(heme)과 아연-프로토포르피린 IX(zinc protoporphyrin IX), 식품과 화장품에 폭넓게 활용할 수 있는 기능성 천연 색소인 라이코펜(lycopene)과 베타카로틴(β-carotene), 식품이나 음료 제조 시 포도향을 내기 위해 널리 활용되는 포도 유래 화합물인 메틸안트라닐산(methyl anthranilate) 등을 비롯해 다양한 식품 및 미용 화합물을 생산하는 고성능 미생물 세포공장들을 다수 개발한 바 있다.
연구진은 이번 네이처지로부터의 초청 논문을 통해 각종 식품과 화장품에 이용되는 아미노산과 단백질, 지방 및 지방산, 비타민, 향미료, 색소, 알코올, 기능성 화합물과 기타 식품 첨가물 등을 생산할 수 있는 괄목할만한 미생물 세포공장의 개발 사례들과 이러한 미생물 유래 물질들을 성공적으로 제품화해 시장에 공급하고 있는 전세계 기업들을 총망라했다. 더 나아가 보다 다양한 식품 및 미용 화합물들을 친환경적으로 생산하면서도 경제성도 갖춘 산업용 미생물 세포공장의 개발에 박차를 가할 수 있는 다양한 시스템 대사공학 전략을 정리 및 제시했다.
예를 들어, 미생물 발효 과정을 통해 동물의 사료로 이용되거나 비료로 이용되고 있는 비식용 바이오매스 등을 통해 영양학적으로 높은 가치를 지닌 단백질이나 아미노산을 생산함으로써 전세계 식량 생산량의 증대 및 안정적인 공급에 기여할 수 있다. 더 나아가 대체육 개발 등 동물성 단백질에 대한 의존도를 낮춤으로써 가축 사육이나 물고기 양식을 통해 발생하는 온실가스 및 환경오염을 줄이는 데에도 기여할 수 있다. 또한 바닐라 향이나 포도 향을 내는 바닐린(vanillin)이나 메틸안트라닐산(methyl anthranilate)은 다양한 식품에 널리 첨가되고 있으나, 식물로부터 분리정제한 천연 제품은 생산량이 적고 생산단가가 높기 때문에 대부분의 경우 석유화학물질로부터 유래한 바닐린과 메틸안트라닐산을 식품에 첨가하고 있다.
이러한 물질들 역시 미생물의 힘을 빌려 친환경적이고 인체 친화적인 방법을 통해 생산할 수 있다. 붉은색 립스틱이나 딸기맛 우유 등 다양한 화장품이나 식품에 첨가되지만 특정한 선인장에서만 서식하는 연지벌레로부터 추출해야 하는 칼민(코치닐색소), 피부 미용에 도움을 줄 수 있으나 닭벼슬이나 소의 안구에서 추출해야 하는 하이알루론산, 건강보조제로 널리 섭취되고 있지만 상어나 생선의 간 등에서 추출하는 오메가-3 지방산 등도 미생물을 이용하면 윤리적인 문제 없이 친환경적으로 생산할 수 있다.
이번 논문의 제1 저자인 우리 대학 최경록 연구교수는 “김치나 요거트와 같은 전통 발효식품뿐만 아니라, 카카오 콩을 발효시켜야만 얻을 수 있는 초콜릿의 원료인 카카오버터나 미생물 발효를 통해 생산하는 조미료인 글루탐산나트륨처럼 미생물의 도움을 받아 생산한 식품은 이미 우리에게 친숙한 존재”라면서 “앞으로 미생물 세포공장을 통해 친환경적이고 지속가능한 방법으로 생산한 더 다양한 종류의 식품과 화장품을 일상에서 더욱 쉽게 마주할 수 있을 것이다”고 말했다.
또한 이상엽 특훈교수는 “과학기술을 활용해 더 나은 세상을 만들어가는 것은 공학자의 숙명”이라며 “시스템 대사공학 기술의 꾸준한 발전과 적극적인 활용을 통해 식량 위기와 기후변화를 동시에 해결하는 데 크게 기여할 수 있을 것”이라고 밝혔다.
한편, 이번 연구는 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수) 및 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2023.07.26
조회수 1173
-
150% 쭉쭉 늘어나는 전자 섬유 개발
전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다.
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다.
전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로미터이기 때문에, 기존에 이용된 딥-코팅(dip-coating)과 같은 단순한 방법으로 실에 코팅하는 것이 불가능하다. 연구진은 액체금속 입자가 높은 밀도로 실 위에 전달될 수 있고, 블레이드와 기판 사이에서 현탁액의 조성을 실시간으로 바꾸면서 화학적 변성을 통해 액체금속 입자를 실과 접착시킬 수 있는 새로운 방법인 현탁액 전단(suspension shearing) 방법을 통해 이를 해결했다. 추가로 기계적 안정성이 우수한 탄소나노튜브(CNT)가 포함된 액체금속 입자를 한층 더 코팅하는 방식으로, 액체금속 복합체의 기계적 안정성도 확보할 수 있었다.
제작된 신축성 전자 섬유는 추가적인 공정이 필요 없이 우수한 초기전도성을 보였고(2.2x10^6 S/m), 기존의 고체 금속 전도체 기반 섬유들과는 다르게 150% 늘려도 전기저항 변화가 거의 없다. 기계적 안정성도 우수해 반복되는 변형 실험에도 전기적 성질을 유지할 수 있었고, 다양한 전자 부품들과 쉽게 통합될 수 있다. 연구팀은 이를 이용해 실제 상용화된 옷에 다양한 전자회로를 구현했다.
나아가서 연구팀은 액체금속 복합체를 코팅하는 방법이 다양한 실에 호환 가능하고, 재료의 생친화성이 우수하기 때문에, 이를 이용해 신경과학 연구에 사용할 수 있는 섬유형 바이오 전자 섬유를 구현했다. 연구팀은 제안된 코팅 방법을 이용해 기계적 변형에 영향을 받지 않는 뇌 활동 전극, 신경 자극 전극, 다기능성 옵토지네틱 프로브를 제작해 넓은 범용성과 높은 공정 신뢰성을 갖는다는 것을 보였다.
우리 대학 이건희 박사, 이도훈 박사과정, 전우진 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)' 온라인 판에 7월 13일자 출판됐다. (논문명: Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics)
스티브박 교수는 "옷에 다양한 전자 공학적인 기능을 웨어러블 형태로 구현하는 가능성을 보여준 연구로 최근에 각광받고 있는 환자 편의성을 높인 웨어러블 헬스케어 소자나 최소침습형 임플란터블 전자소자 개발의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다.
한편 이번 연구는 한국연구재단, KAIST의 지원을 받아 수행됐다. 이건희 박사는 포스코청압재단의 지원을 받고 있다.
2023.07.25
조회수 1364
-
디지털인문사회과학부 고동환 교수, 경영공학부 한인구 명예교수, 대한민국학술원 신임 회원으로 선출
우리 대학 디지털인문사회과학부 고동환 교수와 경영공학부 한인구 명예교수가 대한민국학술원 신임 회원으로 선출됐다.
학술원 회원은 학문 분야별 대표 학술 단체로부터 회원 후보자를 복수로 추천받아 심사위원회 심사를 거쳐 선정된다. 인문사회과학부 75명, 자연과학부 75명 정원 150명으로 구성되며 대한민국학술원법에 따라 평생회원 자격을 갖고 국가로부터 연구에 관한 지원을 받게 된다.
고동환 교수는 역사학자로서 조선후기 서울상업발달사, 조선시대 서울도시사, 한국전근대교통사 등 불모지였던 조선시대 상업과 도시, 교통사를 개척했다.
한인구 명예교수는 정보기술을 경영에 응용하는 융합연구를 하고 국내 최초로 인공지능을 신용 분석에 적용해 지능형 신용평가 시스템을 개발하기도 했다.
학술원은 21일 서울 서초구 본원에서 신임 회원에게 회원 증서를 수여할 예정이다.
2023.07.18
조회수 798
-
전산학부 오혜연 교수, RSS 2023 기조강연 진행
전산학부 오혜연 교수가 2023년 7월 11일 대구 엑스코에서 개최된 '2023 로봇공학, 과학 및 시스템 컨퍼런스(Robotics: Science and Systems, 이하 RSS 2023)' 초청을 받아 기조강연을 진행했다.
발표 제목은 "Toward Culturally Intelligent Language Models" 로 최근 많은 주목을 받고 있는 대형언어모델(Large Langue Models; LLM)이 문화적 지식 및 지능을 갖기 위해 어떤 연구를 해야 하는지에 대한 내용으로 강연을 진행했다.
RSS 2023은 2005년부터 개최된 Robotics 분야의 저명 컨퍼런스로 이번 컨퍼런스는 아시아에서 처음 개최되었다.
이번 RSS 2023에는 전 세계의 AI와 로봇 분야 연구자들과 아마존 로보틱스, 토요타 연구소, 한화시스템 등 세계적 기업을 포함해 40개국에서 온 800여 명이 참여했으며 세계적인 석학 초청 기조 강연, 25개의 워크숍, 112개의 논문 발표, 포스터 세션으로 진행되었다.
2023.07.17
조회수 806
-
기존 반도체 전자소자 공정과 호환되는 신축성 전도체 포토패터닝 방법 개발
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 기존의 반도체공정을 이용하여 고해상도로 패터닝할 수 있는 초기전도성이 확보된 액체금속 기반의 신축성 전도체 필름 제작 방법을 개발했다고 밝혔다.
신축성 전도체는 최근 각광받고 있는 사용자 친화형 웨어러블 소자, 신축성 디스플레이, 소프트 로봇의 전자 피부 개발에 핵심 요소로 여겨져 활발하게 연구가 진행되어왔다. 최근 신축성 전도체 중 하나로 높은 전기전도성과 신축성, 낮은 기계적 강성을 동시에 만족하고 안정성도 어느정도 확보가 된 갈륨기반의 액체금속 입자가 전도성 필러로 각광받고 있다. 하지만 액체금속 입자의 경우에는 기계적 불안정성으로 인하여 제한된 형태의 용액공정으로만 사용이 가능했기 때문에, 기존의 금속을 전자소자에 통합하는 방법인 반도체 공정을 이용하는 것이 어려웠다. 이런 이유로, 액체금속 입자 기반의 전자소자는 지금까지 연구실 수준에서 노즐 프린팅, 스크린 프린팅과 같은 제한된 방법으로 제작되는 것에 그쳤다. 나아가서 액체금속 입자는 초기에는 산화막의 존재로 인하여 전기전도성이 없기 때문에, 추가적인 후처리를 통해 전기전도성을 확보해야했다. 이런 추가적인 공정은 이 새로운 전자재료의 범용성 높은 사용을 막는 큰 장애물이었다.
이런 기존의 문제를 극복하여, 연구팀은 기존의 반도체 공정 (포토리소그래피 기반의 패터닝, 에칭을 이용한 다층구조 통합)과 호환이 가능한 안정적인 형태의 액체금속입자 필름을 코팅하는 방법을 제안하였다. 연구진은 먼저 안정적인 필름을 증착하기 위해 고분자로 쌓인 액체금속 마이크로입자 현탁액을 제작하였다. 용액전단 방법을 이용하여 이 현탁액을 미리 반도체공정을 이용하여 패터닝이 되어있는 기판 위에 대면적으로 균일하게 코팅을 할 수 있었다. 특히 현탁액을 물 기반으로 만들어 코팅 과정에서 포토레지스트 (Photoresist)에 손상을 가하지 않게 하여, 정밀한 패터닝이 가능하게 했다. 포토레지스트 위에 코팅된 액체금속 입자필름은 유기용매를 이용한 lift-off를 통해 최소 10um의 높은 해상도로 패터닝이 가능했다. 특히, 연구진은 이 과정에서 극성유기용매인 DMSO (dimethyl sulfoxide)를 사용하여, 액체금속과 고분자간의 상분리를 유도하였다. 이 과정에서 액체금속 입자 표면의 고분자와 산화막이 제거되어 다른 추가적인 공정없이 초기 전도성을 갖는 도선을 기판 위에 패터닝할 수 있었다. (그림1)
이 공정을 이용해 제작된 신축성 전도체는 기존의 고체 금속 전도체기반 섬유들과는 다르게 50%의 인장이 가해져도 전기저항변화가 거의 없어 이상적인 신축성 도선의 성질을 보였다. 또, 기계적, 화학적으로 안정적이어서 다양한 기판에 전이 (transfer) 공정이 가능하였e다. 액체금속 입자가 패턴된 기판을 마스크 얼라이너 (Mask aligner) 장비 및 에셔 (Asher) 장비를 이용해 고해상도 멀티레이어 회로를 제작할 수 있었다. 연구진은 이 기술을 이용하여 (그림 2)와 같이 신축성 디스플레이, 유연 로봇에 사용할 수 있는 고해상도 전자 피부 등의 구현이 가능함을 보여주었다.
우리 대학 이건희 박사, 김현지 석사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `머터리얼즈 투데이 (Materials Today)' 온라인 버전에 7월 14일 출판됐다. (논문명: Large-area photo-patterning of initially conductive EGaIn particle-assembled film for soft electronics)
연구팀은 "새로운 전자재료를 기존의 표준공정이라할 수 있는 반도체공정에 적용하여 차세대 전자소자의 양산화 가능성을 보여준 의미있는 연구ˮ라고 말했다. 또, "최근에 각광받고 있는 신축성 전도체인 액체금속의 고해상도 패터닝 및 초기전도성을 얻을 수 있는 방법을 제시하여 유연 전자소자 연구의 새로운 방향성을 제시할 수 있을 것으로 기대된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다. 이건희 박사는 포스코청암재단의 지원을 받고 있다.
2023.07.17
조회수 870
-
주진현 교수 연구팀, ASCE EMI 2023 학술대회 논문경진대회 1위
우리 대학 건설및환경공학과 주진현 교수 연구실의 자오이동(Yidong Zhao) 박사과정 학생이 미국토목학회(ASCE) 공학역학협회(EMI) 2023 학술대회의 학생 논문 경진대회 다공역학(Poromechanics) 분야에서 1위에 올랐다.
6월 6일부터 6월 9일까지 미국 조지아 공과대학교(Georgia Tech)에서 개최된 이번 ASCE EMI 학술대회는 매년 약 1,000여 명이 참여하는 공학 역학 분야의 가장 권위 있는 국제학술대회 중 하나다. 공학역학의 분야별로 개최되는 학생논문 경진대회는 제출된 사전 논문 심사를 통해 결선 후보 5명을 선정한 뒤 학술대회 중 발표심사를 통해 최종 수상자를 선정한다.건설및환경공학과 지반역학연구실(지도교수 주진현)의 자오이동 박사과정 학생은 '재료점법의 체적 잠금 해결을 위한 새로운 추정변형구배법(A New Assumed Deformation Gradient Approach to Circumvent Volumetric Locking in Explicit Material Point Methods)' 논문을 발표했다.
재료점법(MPM)은 산사태나 홍수 눈이 흩날리는 등 물체가 복잡하고 크게 변형되는 현상을 시뮬레이션하기 위한 전산기법이다. 자연재해 분석 및 예측과 같은 재난관리 분야부터, 영화 ‘겨울왕국’에서의 눈 애니메이션 같은 컴퓨터 그래픽스 분야까지 다양한 분야에 사용되고 있다.
다만 재료점법을 물, 점토 등과 같은 비압축성 재료에 적용할 경우 변형이 정확히 모사되지 않는 체적 잠김(volumetric locking) 문제가 발생한다. 자오이동 학생은 기존의 방법에 비해 훨씬 간편하면서도 범용적으로 체적 잠김을 해결할 수 있는 획기적인 방법을 제시해 방법의 독창성과 우수성을 인정받아 1위에 올랐다. 자오이동 학생은 "세계 선도대학들의 우수한 학생들과의 경진대회에 참가해 학문적 성과를 교류하고 KAIST의 연구경쟁력을 국제적으로 입증할 수 있는 뜻깊은 경험이었다"라고 밝혔다. 이어, "교수님의 열정적인 지도에 항상 감사드리고 제안한 기술을 더욱 발전시키고 활용하여 산사태, 홍수 등 자연재해로부터 더욱 안전한 사회를 구축하는 데 기여하고 싶다"라고 덧붙였다.ᅠ
2023.07.06
조회수 925
-
황규영 명예특훈교수, IEEE 데이터공학 기술위원회 공로상 수상
우리 대학 전산학부 황규영 명예특훈교수가 'IEEE 데이터공학 기술위원회(Technical Committee on Data Engineering, 이하 TCDE)' 에서 수여하는 공로상(IEEE TCDE Service Award)을 한국인 최초로 수상했다.
IEEE TCDE는 VLDB 국제학술재단(VLDB Endowment), ACM SIGMOD와 더불어 세계 데이터베이스 분야를 이끌어가는 3대 학회 조직 중 하나로 데이터베이스(DB) 분야에서 세계 최고 권위의 학술대회인 IEEE ICDE(International Conference on Data Engineering)를 비롯한 각종 학술대회를 주관하고 있으며 이 분야에서 권위를 인정받고 있는 학술지인 IEEE 데이터공학 회보(Data Engineering Bulletin)를 발간하고 있다.
수상 위원회는 황 교수가 2007년 IEEE 펠로우로(국내 전산학 분야 최초) 2009년 ACM 펠로우로(국내 최초) 선임됐으며, 데이터베이스 분야 세계 톱 저널인 The VLDB 저널의 수석 편집장(Coordinating Editor-in-Chief)(아시아 지역 최초), 세계 톱 국제학술대회인 VLDB(2006)의 대회장(General Chair)(국내 최초 유치), 최고권위 VLDB 국제학술재단(Endowment)의 이사(Trustee, 임기 6년, 재선, 국내 최초), 세계 톱 수준의 권위 학회인 IEEE TCDE의 회장(Chair) 및 고문(Advisor)(아시아 태평양 지역 최초, 10년), 아시아 태평양 지역 권위 학술대회인 DASFAA 운영위원회(Steering Committee)의 위원, 회장, 고문, 포상위원장(Awards Chair) (15년) 등 수 많은 리더십 직책(leadership position)을 역임해 수십 년에 걸쳐 (decades-long) 세계 데이터공학 학계의 발전에 헌신적으로(dedicated) 공헌했으며 아시아-태평양 지역 데이터베이스 분야의 세계화에 공헌했음을 높이 평가했다.
특히, 황 교수는 The VLDB 저널의 창간 편집위원(founding editorial board member)으로 19년간 이 저널을 데이터베이스 분야의 톱 저널로 육성하는 데 지대한 공헌을 하였다. 황 교수가 수석 편집장으로 재임하는 동안 The VLDB 저널은 피인용지수(impact factor) 7.067 (2008년)로 정보시스템 분야 최고 저널로 등극했다.
IEEE ICDE 2023 캘리포니아 아나하임에서 진행된 시상식에는 건강상의 이유로 황규영 교수의 제자인 신은정 박사(Google)가 대신 수령했다.
황 교수는 "이번 수상은 상 자체보다도 연구자로서 살아온 40년의 기간 동안 여러분들과 함께 노력한 공적이 영구히 기록되어 기쁘며 이번 수상이 국내 많은 후배 연구자들이 컴퓨터 분야에서 세계 학계를 이끌어 가는 리더가 되는 계기가 될 것으로 기대한다”고 소감을 말했다.
황 교수는 2014년에도 ACM SIGMOD로부터 세계 데이터베이스 학계의 발전을 위한 지속적이고(sustained) 헌신적인 리더십과 공로로 권위 있는 ACM SIGMOD Contributions Award(공로상)를 수상해 세계 학계의 리더로서 대한민국의 위상을 선양한 바 있다.
황 교수는 대한민국학술원 회원이며 2012년 한국공학상(대통령상), 2017년 대한민국최고과학기술자상(대통령상)을 수상했다.
2023.06.13
조회수 931