본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B0%80%EC%83%81%EC%84%B8%ED%8F%AC
최신순
조회순
가상세포 이용해 병원균 잡는 항생제 개발
교육과학기술부는 미래기반기술개발사업(시스템생물학 연구)으로 지원한 우리학교 이상엽 교수팀(전남대 이준행교수, 생명(연), 화학(연) 공동연구)이 항생제에 내성을 가진 병원균 퇴치를 위해 시스템생물학을 기반으로 한 신약발굴 방법론을 개발했다고 밝혔다. 이 교수팀은 병원균이 항생제의 오남용으로 인해 치유가 쉽지 않은 점을 감안하여 내성 병원균의 가상세포를 만들어서 이에 대한 특성을 분석하여 제어하는 방법으로 효과를 입증했다. 이번 연구의 대상은 오염된 어패류에 의해 감염되는 패혈증의 병원균인 비브리오 불니피쿠스(Vibrio vulnificus, 이하 비브리오균) 중 내성균 2개이며, 이에 대한 게놈정보와 생물정보를 토대로 가상세포를 구축하였다. 이러한 가상세포가 생존하기 위해 필요한 화학물질은 193개로 분석되었으며, 이중에서 결정적 역할을 수행하는 5개의 화학물질을 추출하였으며, 이에 관여하는 유전자를 제거함으로써 내성 비브리오균의 성장이 억제되는 효과를 증명하였다. 이 교수팀의 연구결과는 올해 1월 18일 세계적 권위의 네이처 자매지인 ‘분자시스템생물학 (Molecular Systems Biology)지’에 논문으로 게재되어 세계적으로도 연구의 우수성이 인정되었다. 이러한 시스템생물학 기법에 근거한 신약발굴 방법론은 다른 내성 병원균은 물론 다양한 인간 질병에도 적용할 수 있는 토대를 마련한 것으로 기대된다.
2011.01.19
조회수 13562
이상엽 교수, 가상세포 방법론 개발
- 미국 국립과학원회보 게재, "가상세포 시스템 활용 대사특성 예측 기술 개발" - 우리학교 이상엽 교수 연구팀이 생명체의 세포를 체계적으로 분석하여 세포 전체의 대사적 특성을 정확하게 예측할 수 있는 "가상세포 방법론"을 개발했다. 이 연구는 교육과학기술부 "미래기반기술사업(시스템생물학 연구개발)의 지원을 받아 수행되었으며, 연구결과는 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌" 8월 2일자 온라인판에 게재되었다. 환경문제와 질병에 대한 관심도가 나날이 높아짐에 따라 의학적인 용도 및 일상생활에 널리 쓰이는 화학물질이나 바이오연료 등을 바이오기반으로 생산하는 것이 더욱 중요해 지고 있다. 이러한 유용한 물질들은 상당수 미생물을 사용하여 개발하는데, 이를 위해 미생물의 체계적인 분석과 개량 연구가 필요하다. 이에, 전체적인 관점에서 복잡한 생명체의 대사를 체계적으로 파악할 수 있는 방법의 개발이 요구되어 왔다. 가상세포는 컴퓨터시스템으로 실제세포를 모사하여 연구하고자하는 생명체의 세포를 체계적으로 분석하는 중요한 도구이다. 이상엽교수 연구팀은 생명체의 정확한 모사를 위한 가상세포 시스템을 개발하였다. 이를 이용하여 얻어진 가상세포 예측 결과들은 실제 세포 실험으로 측정된 결과와 비교하여 정확도가 획기적으로 개선되었다. 이로써 보다 정확한 가상세포 예측이 가능하여 실제 생명체의 분석연구에서 시간과 비용을 큰 폭으로 줄일 수 있게 되었다. 이번 가상세포 방법론의 개발은 국내뿐 아니라 세계생명공학 분야에서 새로운 패러다임을 제공하여, 생명체의 분석과 개량연구에 소모되는 시간과 비용을 절감할 수 있게 되었으며, 또한 이번에 개발한 방법론은 게놈 염기서열이 분석된 모든 생명체에 적용이 가능하기 때문에 다양한 산업적, 의학적 응용을 위한 미생물 개발에 활용될 수 있을 것으로 기대된다.
2010.08.04
조회수 13353
가상세포를 이용한 병원균의 약물표적 예측기술 개발
- 가상세포 시스템 활용한 새로운 항생제 개발에 큰 파급효과 기대 - 분자 바이오시스템(Molecular BioSystems)지 표지 논문으로 게재 생명화학공학과 이상엽(李相燁, 46세, LG화학 석좌교수, 생명과학기술대학 학장)특훈교수팀이 항생제에 내성을 가지는 병원성 미생물의 가상세포를 구축하고 이를 이용해 병원균의 성장을 효과적으로 억제할 수 있는 약물 표적을 예측하는 기술을 최근 개발했다. 김현욱(생명화학공학과 박사과정)연구원의 학위 논문연구로 수행한 이번 연구 결과는 유럽 화학 관련 학술단체 RSC(The Royal Society of Chemistry)에서 발간하는 분자 바이오시스템(Molecular BioSystems)지의 2월호 표지 논문으로 게재됐다. 예전에는 병원성 세균들을 항생제로 쉽게 치유할 수 있었지만 이제는 항생제의 오남용으로 인해서 병원균들은 항생제에 대한 내성을 가지게 됐으며, 따라서 한 번 감염이 되면 치유가 이전보다 쉽지 않다. 그 대표적인 병원균이 바로 아시네토박터 바우마니(Acinetobacter baumannaii)다. 본래 흙이나 물에서 쉽게 발견되는 이 미생물은 항생제에 내성을 갖지 않아 치료가 쉽고 건강한 사람은 잘 감염되지 않는 균이었다. 그러나 지난 10년 동안에 항생제에 내성을 갖는 슈퍼박테리아로 변했으며, 이라크 전쟁에 참전한 다수의 미군과 프랑스군도 이 균에 감염되면서 상처가 낫질 않아 많은 희생을 야기했다. 李 교수 연구팀은 아시네토박터 바우마니의 게놈과 전체적인 대사특성을 알아보기 위해 각종 데이터베이스에 산재해 있는 생물정보와 문헌정보를 컴퓨터에 입력, 분석, 디자인하여 가상세포를 구축하고, 다양한 네트워크 분석기법, 필수 대사반응 및 대사산물 분석 등 융합 방법론을 이용해 이 병원균의 성장을 효과적으로 차단할 수 있는 약물표적을 예측했다. 인간에게는 영향을 미치지 않으면서 병원균에게만 작용하는 최종 약물표적들이다. 필수 대사반응은 생명체가 대사활동을 정상적으로 하기 위하여 반드시 필요한 효소반응을 말하며, 필수 대사산물이란 생명체가 생존하기 위해 대사에 반드시 필요로 하는 화학물질로서 이들을 제거할 경우 이와 반응을 하는 효소들을 모두 억제되는 효과가 있다. 이 약물표적은 가상세포를 구성하고 있는 대사 유전자, 효소 반응, 신진대사들의 기능을 짧은 시간 안에 빠짐없이 체계적으로 검토해 예측함으로써 그 신뢰성을 높였다. 이번 연구 결과는 최근 많은 관심을 받고 있는 시스템 생물학 연구기법을 이용하여, 처음으로 필수 대사물질의 체계적인 발굴을 통해 효과적인 약물표적을 찾고, 나아가 새로운 항생제 개발의 가능성을 열었다는 점에서 높이 평가받고 있다. 또한 병원균에 의한 감염 현상과 신약개발에 큰 공헌을 할 것으로 기대를 모으고 있다. 李 교수는 “현재 수많은 생물의 게놈 정보가 쏟아지고 있지만 이것을 실질적으로 유용한 정보로 전환하는 데에는 아직도 많은 어려움이 있다. 아시네토박토 바우마니의 게놈 정보로부터 의학적으로 실용성이 있는 정보를 재생산했다는 점에서 의의가 있다”며 “특히 이 병원균의 가상세포 개발은 특정 환경에서 필수 유전자나 효소 반응에 대한 대량의 새로운 생물정보를 제공할 수 있는 계기를 마련했다.”고 말했다. 李 교수팀은 교육과학기술부 시스템 생물학 연구개발사업의 지원으로 이번 연구를 수행했으며, 다양한 병원성 균주의 가상세포 개발 및 항생제 약물표적 예측 방법을 특허 출원했다. ▣ 용어설명 ○ 약물표적 : 차단 시 병원성 미생물의 성장을 효과적으로 억제할 수 있는 단백질 효소 및 그와 관련된 화학물질 ▣ (자료1) 가상세포. (자료2) 가상세포로부터 필수대사산물을 예측한 후에, 병원균을 가장 효과적으로 죽일 수 있으면서 동시에 인간에게는 영향을 미치지 않는 약물표적만을 추리는 과정
2010.02.18
조회수 15580
매미와 개구리는 지휘자없이 어떻게 합창할까
나무위의 매미와 논두렁의 개구리는 지휘자 없이 어떻게 합창할까? 이와 관련해서, KAIST 바이오 및 뇌공학과의 조광현 교수는 생명체의 동기화된 주기적 진동신호의 생성원리를 최근 규명했다. 나무에 붙어있는 많은 반딧불들의 동시다발적인 깜빡임, 매미들의 조율된 울음소리, 뇌신경세포들간의 전기신호, 세포내 분자들의 농도변화에 이르기까지 생명체는 다양한 형태의 주기적 진동신호 교환을 통해 정보를 전달하는데, 이들은 놀랍게도 정확히 동일한 위상(phase)으로 동기화되곤 한다. 이는 마치 오케스트라에서 지휘자 없이도 모든 연주가 일정한 박자에 맞춰 이루어지는 것과 같다. 어떻게 생명체의 여러 주기적 진동신호들이 그러한 동기화를 이루는가? 우리학교 바이오및뇌공학과 조광현(曺光鉉) 교수 연구팀이 대규모 가상세포(virtual cell)실험을 통해 생명체의 다양한 주기적 진동(oscillation)신호들이 동기화(synchronization)되는 보편적인 원리를 규명했다. 曺교수팀은 이번 연구를 통해 여러 독립적인 주기적 진동신호들은 양성피드백(positive feedback)을 통해 서로의 위상에 영향을 줘 하나의 동일한 위상으로 수렴되는 현상을 밝혀냈다. 특히 양성피드백은 이중활성(double activation) 또는 이중억제(double inhibition)의 구조로 구현된다. 이중활성피드백은 연결시간지연이 짧을 때, 이중억제피드백은 연결시간지연이 길 때 보다 안정적인 신호동기화를 가능하게 했다. 또한, 노이즈(noise) 교란이 있을 때 이중활성피드백은 진동신호의 주기보다 진폭을 안정적으로 유지하는 반면 이중억제피드백은 연결강도에 불규칙한 변화가 주어졌을 때 일정한 주기와 진폭을 유지시켜줬다. 현존하는 대부분의 현상들이 이러한 원칙을 따르고 있었다. 이번에 규명된 원리는 생체내 주기적 진동신호의 동기화가 교란될 때 발생하는 뇌질환 등 여러 질병의 원인을 새롭게 조명하는 계기를 마련할 것으로 기대된다. 이번 연구는 기존 생명과학의 난제에 대해 IT융합기술인 시스템생물학(Systems Biology) 연구를 통해 해답을 제시할 수 있음을 보여줬으며, 향후 생명과학 연구에 있어서 가상세포실험의 무한한 가능성을 제시했다. 曺교수는 “생명체는 복잡하게 얽혀있는 것으로 보이는 네트워크속에 이와 같이 정교한 진화적 설계원리를 간직하고 있었다”며 “이러한 규칙들은 임의로 수많은 디지털 진동자들을 만들어 인공진화를 통해 신호의 동기화 현상을 관측하였을 때에도 마찬가지로 성립된다는 흥미로운 사실을 확인했다”고 말했다. 이 연구는 교육과학기술부가 지원하는 한국연구재단 연구사업의 일환으로 수행되었으며, 연구결과는 세포생물학 분야 권위지인 세포과학저널(Journal of Cell Science) 2010년 1월 26일자 온라인판에 게재됐다. 세포생물학 실험결과만을 출판하는 이 저널에 순수 컴퓨터시뮬레이션만으로 수행된 가상세포실험 연구결과가 게재된 것은 매우 이례적인 일이다. 인터넷주소: http://jcs.biologists.org/cgi/content/abstract/jcs.060061v1 <용어설명>◯ 양성피드백(positive feedback): 서로 연결되어 있는 두 요소 사이에 어느 하나의 변화가 결과적으로 스스로를 동일한 방향으로 더욱 변화시키는 형태의 연결구조. <사진설명>◯ 설명: A: 서로 상호작용하는 두 생체신호 진동자(oscillator)들의 예시. B: 이중활성 양성피드백으로 연결된 진동자들. C: 이중억제 양성피드백으로 연결된 진동자들. D: 연결강도에 따라 진동신호 동기화에 소요되는 시간. E: 연결강도 증가에 따라 점차 진동신호 동기화가 되어가는 모습의 예시 (좌측의 비동기화 진동신호들이 점차 우측의 동기화된 진동신호들로 변화되어 가는 과정을 나타냄).
2010.02.02
조회수 19412
이상엽교수팀, 시스템생물학 기반 산업용 미생물 개발 전략 제시
-생명공학분야 권위 리뷰지 “생명공학의 동향 (Trends in Biotechnology, Cell Press)” 표지 논문 게재 우리학교 생명화학공학과 및 바이오융합연구소 이상엽(李相燁, 44세, LG화학 석좌교수) 특훈교수와 바이오융합연구소 박진환(朴軫煥, 38세) 박사 연구팀이 다가오는 산업바이오텍 시대에 경쟁력을 갖추기 위한 시스템 생물학 기반의 미생물 대사공학 전략을 개발했다. 이 연구 결과는 셀(Cell)誌가 발행하는 생명공학 분야 최고 권위 리뷰지인 생명공학의 동향(Trends in Biotechnology) 8월호 표지 논문에 게재됐다. 교육과학기술부 게놈 정보 활용 통합 생물공정 개발 사업의 일환으로 수행한 이번 연구는 산업용 미생물을 개발함에 있어 유전체 및 기능 유전체 정보와 가상세포 시뮬레이션을 통합 적용하고, 발효 및 분리정제 공정까지 고려한 대사공학 방법을 제시함으로서 다가오는 바이오 기반 산업 시대에 경쟁력을 갖는 균주 개발 전략을 체계적으로 제시한 것으로 평가됐다. 유가가 고공행진을 계속하고 지구온난화 등 환경문제가 심각하게 대두되는 지금 세계 각국은 바이오매스를 이용하여 화학, 물질, 에너지 등을 생산하는 바이오기반 산업 시스템 구축에 박차를 가하고 있다. 미생물을 이용한 산업바이오텍 공정이 경쟁력을 갖추기 위해서는 자연계에서 분리된 미생물의 낮은 성능을 대폭 향상시키기 위하여 대사공학으로 미생물을 개량하여야 한다. 기존의 산업바이오텍에 사용되는 미생물 균주 제조 방법과 공정개발은 무작위 돌연변이화 및 균주의 일부분만 직관적으로 조작하는 방법에 의해 수행되었다. 하지만 이들은 원하지 않은 부분에도 돌연변이를 일으켜, 균주 전체의 대사 상태를 한눈에 볼 수 없으며, 향후 환경이 바뀌었을 때 추가 개발이 용이하지 않다는 단점이 있었다. 李 교수 연구팀은 시스템 생물학의 원리에 입각하여 크게 3 단계로 나누어 체계적으로 미생물을 개발하는 새로운 전략을 제시하였다. 1단계에서는 미생물의 조절 기작 등 연구를 통해 알게 된 사실에 기반하여 게놈상의 필요한 부위만을 조작, 초기 생산균주를 제작한다. 2단계에서는 시스템 수준의 분석을 통하여 확보한 오믹스 데이터와 가상세포의 시뮬레이션 결과를 융합, 세포내의 대사흐름 최적화를 통해 목적 산물을 최고 수율로 생산할 수 있는 균주를 제작한다. 마지막 3단계에서는 실제 생산 공정 개발 단계에서 생길 수 있는 문제점들을 시스템 생물학 기법에 입각하여 해결함으로써 우수 산업용 균주의 제조를 완료한다. 이 전략은 시스템 생물학 원리를 이용하여 균주 전체의 생리 대사 현상을 한눈에 파악하면서 균주의 대사공학적 개량이 가능하다는 점에서 기존의 방법과는 차별된 한 차원 높은 수준의 균주개발 전략이라고 할 수 있다. 이번 논문의 첫 번째 저자인 朴 박사는 "최근 연구팀에서 수행 중인 시스템 생물학 기법을 이용한 실제 균주 제작 과정의 경험과 결과를 토대로 전략을 확립 제시하였기 때문에 실제 생명공학 산업계에 종사하는 연구자들에게 실질적인 도움이 될 것으로 생각한다“고 말했다. 李 교수팀은 실제로 이 전략을 이용하여 최근 용도가 다양한 숙신산을 고효율로 생산하는 미생물과 고수율의 아미노산 (발린, 쓰레오닌) 생산균주, 바이오부탄올 생산균주 등을 개발한 바 있다. <용어설명> 1) 가상세포: 세포내에서 일어나는 모든 효소 반응을 컴퓨터에서 재구성하여 실제 세포처럼 반응 시켜 결과를 예측하는 시스템을 말한다. 2) 대사공학: 세포의 대사 및 조절 회로를 체계적으로 조작하여 원하는 생산물을 고효율로 생산할 수 있도록 만드는 기술을 말한다. 3) 오믹스 (omics): 세포 또는 개체 내에서 발현되는 단백체(proteome), 전사체(transcriptome), 대사체(metabolome), 흐름체(fluxome) 등 생명현상과 관련된 중요한 물질에 대한 대량의 정보를 획득하여 이를 생물정보학 기법으로 분석하여 전체적인 생명현상을 밝히려는 학문이다4) 시스템 생물학 (systems biology): 각종 오믹스(transcriptome, proteome, fluxome, metabolome) 데이터를 융합하고 전산 생물학 기법으로 해석하여 세포의 생리 상태를 다차원에서 규명함으로써 세포와 생명체 전체를 이해하고자 하는 학문이며, 이 플랫폼을 기반으로 유용한 미생물의 개발이 가능하다.
2008.07.24
조회수 20263
IECA2006 국제학술대회 한국 개최
시스템 생물학 분야 세계적 전문가들 한국 총 집결 오는 10월 31일 부터 4일간, 제주 국제컨벤션센터에서 세계적 석학 47명 강연, 관련학자 16개국 2백여명 참여 한국의 시스템 생물학분야 연구역량 국제적 인정 KAIST(총장 서남표)가 주최하고 KAIST 시스템생물학연구팀, 아시아과학인재포럼, BK21 화학공학사업단, 미생물프론티어사업단에서 주관하는 제3회 IECA2006((International E. Coli Alliance, 국제대장균연대모임 시스템 생물학 국제 학술대회 /대회 의장 이상엽 KAIST 생명화학공학과 교수)가 오는 10월 31일부터 11월 3일까지 4일동안 제주 국제컨벤션센터에서 개최된다. 이번 대회에는 대장균의 시스템 생물학 및 가상세포 시스템, 분자생물학, 생물정보학 등 다양한 학문분야의 세계적 석학 47명(국외 38명, 국내 9명)이 강연할 예정이며, 16개국의 저명 석학 2백여명이 참여할 예정이다. 참여예정인 주요 외국연사로는 재조합 대장균에의한 바이오에탄올의 창시자인 플로리다주립대학의 인그램(L. Ingram) 교수, 컴퓨터 대사시뮬레이션의 대가인 캘리포니아 샌디에고 대학의 팔슨(B. Palsson) 교수, 대장균 게놈을 밝힌 위스콘신대학의 블레트너(F. Blattner) 교수, 일본 E-Cell팀의 총책임자인 도미타(M. Tomita) 교수, 빌 게이츠로부터 지원받아 항말라리아 약품 연구를 선도하고 있는 캘리포니아 버클리대학의 키슬링(J. Keasling) 교수, 시스템 생물학의 창시자인 SONY의 기타노(H. Kitano) 박사, Silicon Cell을 개발한 네덜란드의 웨스터오프(H. Westerhoff) 교수, 미국 NCBI에서 게놈연구를 선도하는 갈페린(M. Galperin) 박사, EcoCyc, MetaCyc 등 세계 최고의 대사 데이터베이스를 개발한 카프(P. Karp) 박사, 대장균의 진화와 유전학 전문가인 미국의 렌스키(R. Lenski) 교수, 대장균 4천3백개의 개개의 유전자가 결손된 돌연변이 대장균을 만들어 연구하는 일본의 모리(H. Mori) 교수, 독일 시스템 생물학을 책임지는 스튜트가르트대학의 리우스(M. Reuss) 교수, 일본 생물정보학회장 미야노(S. Miyano) 교수, 호주 생물정보학연구센터장 레이건(M. Ragan) 교수, 전세계 대장균 네트워크를 주도하는 미국 퍼듀대학의 워너(B. Wanner) 교수, 재조합 단백질의 생산과 관련 기술의 세계적 권위자인 텍사스주립대학 조지우(G. Georgiou) 교수, 유럽 생명공학의 리더인 퓰러(A. Puehler) 교수, 호주 AIBN 대사공학 전문가인 닐슨(L. Nielsen) 교수 등 세계 최고의 석학들이 모두 한자리에 모인다. 그 외에도 실제 생명공학 산업화에 관련하여 연구를 주도하고 있는 세계적 화학기업인 미국 듀퐁사, 가상세포 상용화를 주도하는 미국 제노마티카사, 대사공학 기업인 프랑스의 메타볼릭익스플로러사 등에서의 산업화 사례도 발표된다. 국내 주요연사로는 게놈엔지니어링의 대가인 KAIST 생명과학과 김선창 교수, 동적모사 분야 서강대 이진원 교수, 미생물생리 분야 한국생명공학연구원 반재구 박사, 신규 대장균의 게놈 분야 김지현 박사, 대장균 전사조절 분야 권오석 박사, 효모의 시스템생물학 분야 강현아 박사 등이다. 이번 학술대회 의장인 이상엽 교수는 이번 학술대회에서 과학기술부 시스템생물학 연구개발 사업의 주요결과를 공개한다. 이번 학술대회는 미생물 연구의 정점에 서있는 대장균 연구에 관한 모든 분야를 대상으로 한다. 대장균에서 일어나는 세포의 생리학적 현상들에 대한 규명 및 발견은 물론, 인실리코(in silico) 네트워크 모델을 통한 산업적?경제적 균주 개발이나 omics 기술 개발 및 응용 등의 시스템 생물학 측면을 다루게 된다. 이렇게 광범위한 부분을 다룸으로써 기초 연구와 산업적 응용 사이를 연결하는 다리 역할을 하는 것이 이번 학회의 주목적이다. 또한 대장균 연구에 대한 국제적 연구동향 및 주요 내용을 공유하고, 공통 기반의 연구 하드웨어 및 소프트웨어를 구축하며, 다른 생명공학 연구로의 응용에 발판이 될 수 있는 거대한 대장균 데이터베이스를 만드는 것을 목적으로 하고 있다. 기존의 IECA학회와는 달리 이번 IECA2006에서는 학계와 연구계의 순수 및 응용연구 발표 뿐만 아니라 산업체에서 시스템생명공학의 활용에 관한 실례들과 산업화에 적용되는 시스템생물학 사례들도 발표된다. 여종기 전 LG화학 CTO, 윤재승 대웅제약 부회장, 정광섭 GS칼텍스 연구소장, 박진환 네오위즈 사장, 이진 메디제네스 사장, 유진녕 LG화학기술연구원장, 서정선 마크로젠 회장, 이병훈 유니베라 사장 등 산업계 자문단은 앞으로 시스템생물학이 의약에서 화학제품에 이르는 모든 생명공학의 중심에 설 것임을 예상, 이번 국제학회를 적극적으로 지원하고 있다. 이번 학술대회 의장이며, 실질적인 대회 주관자인 KAIST 생명화학공학과 이상엽(李相燁, 42, LG화학 석좌교수, 생물정보연구센터 소장) 교수는 “최근 전 세계적으로 많은 관심을 가지고 연구하고 있는 시스템생물학과 관련하여 세계적인 석학들이 대거 참석할 예정이다. 이번 학술대회가 많은 관심 속에 한국에서 치러지게 된 것은 그만큼 한국의 시스템 생물학의 역량이 국제적으로 인정받고 있음을 의미한다. 이번 대회를 성공적으로 마무리하여, 해외 선진국의 시스템생물학 관련 최신기술 및 동향을 습득하고, 국제적인 석학들과 한국 과학자들 간의 유기적인 교류와 협력을 유도하여 한국 시스템생물학 및 생명공학 발전에 큰 기여를 했으면 한다.”라고 소감을 밝혔다. 이번 학회의 실무운영을 돕고 있는 KAIST 생명화학공학과 최종현 연구교수는 “이번 대장균 시스템 생물학 국제학술대회에 큰 관심들을 보여 원래 제한하고자 했던 등록자수 150명을 넘어 170여명이 등록한 상태다. 조직위원회에서는 세계적인 학술행사에 우리나라 학자들이 좀더 참석할 수 있도록 20-30여명의 추가 참석자를 받기로 결정했다. 우리나라가 시스템 생물학 관련 글로벌 네트워크의 중심에 설 수 있는 좋은 기회라고 생각한다.”라고 말했다. 최근 인체를 비롯한 다양한 생물에 대한 유전자 지도가 완성되고, 유전체, 전사체, 단백체등의 새로운 분석기술이 등장함에 따라, 이를 이용한 다양한 생물학적 지식을 총체적으로 찾고자 많은 학자들이 노력하고 있다. 이를 위해 생물학, 수학, 전산학, 화학공학이 융합되어 생명현상을 시스템수준에서 이해하고자하는 시스템생물학이 현재 생명공학의 중심에 자리잡고 있다. 시스템 생물학 혹은 시스템 생물공학적 기법을 이용하여 살아 있는 세포의 포괄적인 이해를 위해 이와 관련된 중요 연구그룹의 일부 과학자들은 연구에 있어서 효율을 최대화하면서 필수적인 정보의 공유를 위하여 전 세계 전문가들의 연대 필요성에 동의하기에 이르렀고 이러한 목표를 달성하기 위해 IECA가 조직되었다. IECA는 앞으로 대장균의 유전체, 전사체, 단백체 등의 연구 내용을 상호 교류 및 공유하고 이러한 데이터들을 바탕으로 거의 실제 대장균과 동일한 in silico 모델을 개발할 것을 목적으로 두고 있다. 대장균에 대해 완벽한 가상 모델을 구성하면, 이후 보다 복잡한 고등 생물 더 나아가 인체에 대한 가상 모델을 구성하는데 많은 기여를 할 것으로 생각되며, 이러한 가상 세포를 이용하여 지금보다 더 다양한 유용물질을 생산하는데 도움이 될 것이다. IECA는 제1회 대회를 지난 2003년 일본의 게이오대학에서, 제2회 대회를 2004년 캐나다 알버타 대학의 협조로 밴프센터에서 성공적으로 개최한 바 있으며, 국제학회를 통해 전 세계의 우수한 석학들과 정보를 공유하면서 생명 자체를 이해하려는 노력을 더욱 견고히 하고 있다. IECA의 중요성은 네이처 자매지인 몰리큘러 시스템스 바이올로지(Molecular Systems Biology) 저널 2005년 3월호에 소개되기도 했다. 이번 2006년 학술대회에서는 KAIST 이상엽 교수가 그간 과학기술부 지원 시스템생물학 연구개발 사업의 결실로 내놓은 미생물 시스템 생명공학과 관련된 높은 학문적 업적을 인정받아 의장으로 추대되었다.
2006.07.28
조회수 19034
웹 기반 가상세포 분석시스템 WebCell 개발 공개
-생물정보학 관련 전문 학술지인 바이오인포메틱스지 5월호에 게재 - 과학기술부 특정연구개발사업『시스템생물학연구사업』에 참여하고 있는 KAIST 이상엽, 박선원 교수팀은 생명체의 대사 및 신호전달 기능과 특성의 동적 분석을 위한 웹 기반 소프트웨어 ‘WebCell 시스템’을 개발하여 공개했다. 이 시스템은 현재까지 전 세계적으로 개발된 생체 및 세포 동적 모사 시스템 중 가장 다양한 기능을 제공하는 것으로 시스템 생물학 연구의 국제 공동체인 SBML에 등록되어 공개되며, 연구결과는 영국 옥스퍼드대학 출판사 발간 생물정보학 관련 전문 학술지인 바이오인포메틱스 (Bioinformatics)지 5월호에 게재되었다. KAIST(한국과학기술원) 생명화학공학과 이상엽(李相燁, 42, LG화학 석좌교수, 생물정보연구센터 소장), 박선원(朴善遠, 58)교수팀은 과학기술부 특정연구개발사업의『시스템생물학연구개발사업』지원을 받아 다양한 생명현상의 정성 정량적 동적모사가 가능한 웹기반 가상세포 “WebCell”을 개발하여 전 세계에 공개했다. WebCell은 세포 내에서 일어나는 반응들에 대한 결과 예측 뿐 만아니라, 시간에 따른 변화들을 보여주는 동적 분석을 상세한 설명을 따라 인터넷 상에서 쉽게 수행할 수 있다. 또한, 기존 가상세포 소프트웨어의 프로그램마다 다른 형식으로 이루어져 사용에 어려움이 많던 파일들도 자유롭게 원하는 양식으로 변환이 가능하도록 하여, 연구 과정과 결과를 공유하여 더 빠르고 효율적인 연구가 가능해졌다. 또한, 인터넷 상에서 생물학적 네트워크를 모델링하고 만들어진 모델을 저장 및 교환할 수 있으며, 열역학 정보를 이용한 모델 검증, 변수 추정, 구조적 경로 분석 및 대사 조절 분석, 동적 시각화 등을 통한 네트워크의 체계적인 분석 기능을 통합적으로 제공한다. 그리고 기존에 발표된 모델들의 라이브러리도 제공하며 이용자가 자신의 ID로 접속할 수 있는 개인 라이브러리도 가질 수 있으므로, 가상세포 연구에 큰 역할을 할 것으로 기대된다. WebCell이 발표되자마자 시스템 생물학 연구 국제공동체인 SBML(http://sbml.org)에 등록되어 공개되었으며, 연구결과는생물정보학 분야 전문 국제 학술지인 영국 옥스퍼드대학 출판사 발간 바이오인포메틱스(Bioinformatics)지 5월호에 게재되었다. 이상엽 교수는 “향후 대사 흐름 분석 프로그램인 MetaFluxNet, 대사흐름분석 언어인 MFAML, 대사네트워크 전문 데이터베이스인 BioSilico와 연동하여 업그레이드 된 버전의 WebCell을 개발할 예정이며, 궁극적으로 이 모두가 통합된 가상세포를 개발할 예정이다”라고 밝혔다. WebCell 시스템은 웹브라우저를 통해 http://webcell.kaist.ac.kr 이나 http://www.webcell.org로 접속하여 사용자 계정을 획득한 뒤 이용할 수 있다. <용어설명> * SBML(Systems Biology Markup Language): XML을 기반으로 한 언어의 일종으로, 각기 다른 시스템 생물학 소프트웨어간의 가상 세포 모델의 교환을 용이하게 하기 위해 제안된 표준이다. 현재는 국제 공동 프로젝트로 발전하여, 전 세계 60여개 프로젝트가 이 사업에 공동으로 참여하고 있다. << WebCell 사용 샘플그림>>
2006.04.28
조회수 18453
KAIST 출신 이동엽 박사, 싱가폴 대학 교수와 국립연구소에 동시 부임
생물학, 전산학, 시스템공학 융합학문인 생물정보학 및 시스템생물학 전공 국내외 17편의 논문발표와 가상세포 모델 개발로 주목받고 있는 연구자 KAIST 출신 토종박사가 세계 20위권의 싱가포르 국립대학의 조교수로 임용됨과 동시에 싱가포르의 대표적인 정부연구소인 생물공정기술연구 소(Bioprocessing Technology Institute, BTI)의 연구원으로 초빙되었다. 화제의 주인공은 KAIST 생명화학공학과(지도교수:박선원, 공동지도교수:이상엽)에서 박사학위를 받고 현재 KAIST 생물정보연구센터(소장 : 이상엽)에서 선임연구원으로 재직 중인 이동엽(李東燁, 31)박사. 李 박사는 KAIST에서 국내 최초로 생물학과 전산학, 그리고 시스템공학의 최첨단 융합학문인 생물정보학 및 시스템생물학을 전공했으며, 국내외 17편의 논문발표와 가상세포 모델 개발로 국내외의 주목을 받고 있었다. 현재는 과학기술부의 시스템 생물학 연구사업에서 이상엽 교수팀의 인실리코(in silico)부분 팀장으로 활동하고 있다. 최첨단 생명공학 시설을 가지고 있는 싱가포르의 BTI 연구소에서는 이미 연구원으로 결정된 상태였지만, 연구소와 학교의 협력연구를 李 박사가 제안했고, 마침 시스템 생물학연구를 처음 시작하는 싱가포르 국립대학이 李 박사를 찾게 된 것이다. 이후 싱가포르 국립대학은 BTI 연구소와의 4개월에 걸친 협의 끝에 연구소와 학교에서 동시에 일할 수 있도록 요청하였다. “BTI는 싱가폴 바이오 산업관련 정부투자연구소와 글락소스미스클라인(GSK), 노바티스를 비롯한 세계적인 제약회사의 연구개발(R&D)센터가 모여 있는 생명과학 복합단지(바이오폴리스)에 위치한 최첨단 정부연구소 중의 하나이다.” “이제는 모든 학문 간에 벽은 더 이상 존재하지 않는다고 본다. 경쟁력을 갖추기 위해서는 이들을 어떻게 융합해서 새로운 것을 이끌어 내느냐가 관건이다.” 李 박사는 이러한 융합기술을 적용할 수 있는 최적의 장소가 싱가포르라며, 싱가포르 국립대학의 훌륭한 교수진과 학생들, 그리고 BTI 연구소의 최첨단 실험장비를 활용, 접목하는 가교역할을 하게 될 것이라고 포부를 밝혔다. 이번 李 박사의 임용은 외국의 박사학위나 포스트 닥 경험이 없이 순수하게 국내에서 연구해 외국에 진출하는 성공적인 사례로 꼽히며, 이것이 가능했던 이유는 박사과정동안 세부 전공이 전혀 다른 두 명의 공동지도교수의 전공을 융합해서 새로운 전공을 만들 수 있었기 때문이다. KAIST 생명화학공학과의 박선원 교수와 이상엽 교수는 각각 화학공정시스템 분야와 생명공학 분야의 세계적인 권위자로, 과학기술부의 시스템 생물학 연구사업의 일환으로 공동연구를 위해 동시에 지도하게 된 것이다. 또한 李 박사는 BK21 화공사업단(단장 박정기 교수)의 지원을 받아 미국, 독일에서의 단기 해외 연구를 한 경험이 외국대학에서 교수도 할 수 있다는 자신감을 갖는데 도움이 되었다고 밝혔다. 이상엽 교수는 “이동엽 박사는 정말 보기 드문 재원이다. 넘치는 아이디어와 적극적인 연구자세는 최고 수준이다. 싱가폴에 가서도 KAIST와 지속적인 협력 연구를 하게 될 것이다.” 라며, 큰 기대감을 표시했다. 박선원 교수는 “이동엽 박사는 연구에 대한 열정이 대단히 커서 공정시스템 분야에서도 많은 연구를 했고, 공정시스템분야와 대사공학 분야의 기술들을 융합, 시스템 생물학 분야에 좋은 연구결과를 내었다. 앞으로 싱가포르 측과 KAIST간의 공동연구로 큰 시너지 효과를 낼 수 있을 것으로 기대된다.” 라고 밝혔다. KAIST 생명화학공학과 박승빈 학과장은 “현재 우리 학과의 국제화 지수는 매우 높은 편이다. 외국인 석박사 유학생도 10여명 있고, 영어강의도 많이 개설되는 편이다. 박사과정 세미나를 영어로 하고 있고, 일년에 한 두번은 국제학술회의에서 영어로 발표할 기회를 갖고 있다. 이는 교육부의 BK21 국제화 사업의 일환으로 가능했다. 앞으로 이런 분위기가 지속되어 많은 졸업생들이 이동엽 박사와 같이 국제적으로 인정받는 인재가 되기를 바란다” 고 말했다.
2005.06.09
조회수 23497
새로운 가상세포 모델링 언어 MFAML 개발
KAIST(총장 로버트 러플린)는 생명화학공학과 이상엽 교수(李相燁, 41, LG화학 석좌교수, 생물정보연구센터 소장)가 이끄는 생물정보연구센터 연구팀이 가상세포 모델의 새로운 국제표준어를 개발하는데 성공, 일반에 공개한다고 24일 밝혔다. 1. 개발 배경 현재까지 국내는 물론 전 세계 생명 과학 분야 기업이나 연구 기관들은 연구 결과로부터 얻어진 생물 정보 데이터를 각기 다른 독자적인 포맷으로 저장해 왔다. 또한 생명 과학 연구에 필요한 분석 도구들도 역시 각자의 언어와 환경을 기반으로 개발된 것이 현실이다. 단순한 서열 분석뿐만 아니라 세포내부 대사물질의 흐름 분석과 같은 복잡한 연구를 위해서는 다양한 형태의 데이터와 정보를 얻고, 이를 여러 가지 분석 도구를 통해 입력 데이터로 넣어서 처리하게 된다. 이때 필요한 데이터와 정보에 쉽게 접근하여 분석하기 위해서는 데이터 포맷의 표준화가 시급하다. 또한 기 개발된 다양한 시스템과 분석 도구들을 연구 목적에 맞게 적절히 결합하여 사용하기 위해서는 각 시스템과 분석 도구간의 상호 운용성 확보가 매우 중요하다. 2. 개발 현황 이처럼 전 세계적으로 다양한 생물 정보 데이터 처리를 위해 국제 표준화가 급속히 진행되는 시점에서 KAIST 이상엽 교수팀은 과학기술부 시스템생물학 연구개발 사업의 일환으로 가상세포 모델의 새로운 국제표준어인 MFAML 개발에 성공, 일반에 공개하게 된 것이다. 李 교수팀은 XML이 지니는 이식성, 재사용성, 확장성, 효율적인 데이터 교환 등의 이점을 활용하여 가상세포 모델을 구조적으로 표현할 수 있는 데이터 서식을 개발하였으며, 특히 가상세포의 다양한 유전학적 또는 환경적 실험조건과 분석결과를 표준화하여 누구나 쉽게 정보를 공유할 수 있고, 다른 분석 환경에서 손쉽게 이용 가능하도록 하였다. KAIST 생물정보연구센터의 윤홍석 연구원은 “MFAML을 통해 전 세계에 퍼져있는 바이오 정보의 효율적인 활용이 기대되며 정보의 표준화를 통한 기술적, 경제적 이득을 얻을 수 있을 것이다. 또한, 함께 제공되는 라이브러리를 통해 손쉽게 이를 구현 가능하도록 하였다”고 설명했다. 3. 개발성과 및 향후계획 李 교수팀은 기존에 전세계에 공개한 가상세포 초기 모델 프로그램인 메타플럭스넷의 개발과 통합 데이터베이스 시스템인 바이오실리코 구축과 더불어 이번 개발성과를 통해 가상세포 개발에 한 발짝 더 나아가게 되었다. 李 교수는 “기존의 개발한 메타플럭스넷이나 바이오실리코의 경우는 각각의 개별 시스템으로 운용되어 왔으나 이번에 수행한 연구를 통해 각각의 시스템을 하나로 묶을 수 있는 기반을 가지게 되었다. 앞으로도 지속적인 연구와 업그레이드를 통해 다양한 가상세포 모델을 제공하도록 하며, 전 세계의 정보 교환의 기초 도구로 활용될 수 있도록 노력 하겠다”고 밝혔다. 현재 MFAML에 대한 관련 정보는 홈페이지(http://mbel.kaist.ac.kr/mfaml)에서 무료로 다운로드 받을 수 있다. KAIST 생물정보연구센터의 이동엽 박사는 “조만간 다양한 가상 세포 시뮬레이션이 가능한 획기적인 통합 환경을 제공하게 될 것"이라고 말했다. 한편, 이 연구 성과는 생물정보학 분야 저명 학술지인 英國 옥스퍼드대학출판사가 발간하는 바이오인포메틱스(Bioinformatics)誌에 게재 승인되어 온라인상에 공개되었다. 본 MFAML 관련 개발된 표준화 기술은 대사공학과 연결시켜 현재 국내외 특허 출원중이다. <용어 설명> ① XML(eXtensible Markup Language) : 주고받는 데이터의 포맷을 표준화해서 데이터 교환을 용이하게 하기 위해 생겨난 정보교환 기술로 인터넷 웹상의 데이터와 각종 문서에 대한 일관된 표준이다. ② MFAML(Metabolic Flux Analysis Markup Language) : 주고받는 데이터의 포맷을 표준화해서 데이터 교환을 용이하게 하기 위해 생겨난 정보교환 기술인 XML을 이용하여 생체 대사흐름을 쉽게 분석할 수 있도록 만들어진 일종의 가상세포모델 표준언어
2005.05.25
조회수 20532
국내 가상세포 연구 국제화 본격 시동
국내 가상세포 연구 국제화 본격 시동KAIST 대사회로 분석 프로그램‘메타플럭스넷(MetaFluxNet)’ 새 버전 발표 - KAIST 이상엽교수 연구팀, 과학기술부 국가지정연구실 및 시스템생물학 사업 가상세포 대사 시뮬레이션 소프트웨어의 시스템생물학 기반 업그레이드 버전 MetaFluxNet v. 1.69 개발 공개 컴퓨터 상에서 대사회로 분석 시뮬레이션을 통해 실제 생물 실험의 상당부분을 효율적으로 대체하여 비용 절감 및 시스템 성능 개선 효과 시스템 생물학 연구의 국제 공동체인 SBML 프로그램에 공동참여 향후 데이터베이스와 연동하여 가상세포시스템 구축을 위한 통합환경 개발 및 상용화 예정 1. 개발배경 몇 년 전까지만 해도 한 미생물의 유전자 지도를 완성하기 위해 1년 이상 걸리던 것이, 이제는 불과 며칠 밖에 걸리지 않고, 유전자에서 단백질과 상호작용 네트워크에 이르기까지 다양한 수준의 생물학 정보들이 한꺼번에 쏟아져 나오고 있다. 이제 이러한 정보와 첨단 컴퓨터 가상실험 기술을 이용해 복잡한 생명현상을 이해하거나 이를 산업적으로 이용하려는 노력이 이뤄지고 있다. 축적된 수많은 생물정보들을 바탕으로 가상세포를 모델링하여 생명체 현상을 체계적으로 분석하고 활용하는 시스템 생명공학 연구가 바로 이와 같은 맥락으로, 전 세계에서 경쟁적으로 이루어지고 있는 반면 국내 연구는 다소 미흡한 실정이었다. 2. 개발현황 KAIST(총장 로버트 러플린) 생명화학공학과 대사공학국가지정연구실의 이상엽(李相燁, 40, LG화학 석좌교수, KAIST 생물정보연구센터 소장)교수는 생물정보연구센터의 이동엽 박사와 공동으로 기존에 초기 버전으로 공개했던 가상세포 분석 프로그램 MetaFluxNet의 새로운 버전 1.69를 개발하는데 성공하였다. 이번에 발표한 새 버전을 통해 약 1,000개 이상의 생화학 반응식들로 이루어진 실제 미생물에 근접한 가상세포시스템 구성이 가능해졌다. 이를 바탕으로 컴퓨터상에서 실험 환경을 다양하게 변화시키거나 유전자를 조작했을 때 세포 내부에서 어떤 현상이 일어나는지 가상적으로 정확하게 예측하게 된다. 전체 세포 수준의 미생물 모델링을 비롯하여, 세포내의 흐름분석, 네트워크 시각화 등의 가상 세포 시뮬레이션을 위한 핵심 기능을 제공하고 있고, XML과 같은 최신 데이터 교환기술을 이용해 다양한 프로그램과 효과적으로 연동할 수 있다. 李 교수팀은 숙신산 산업균주인 맨하이미아균의 유용성을 규명하는데 이 프로그램을 일부 활용하여 최근 네이처 바이오테크놀로지에 발표한 것으로 알려졌다. 3. 개발성과 및 향후계획 李 교수팀은 실험, 문헌 및 자체 개발한 각종 데이터베이스로부터 다양한 가상세포 모델을 구축하고 적용하여 막대한 시간과 비용이 드는 수많은 반복 실험의 상당부분을 대체하고 있다. 현재 MetaFluxNet(버전 1.69) 프로그램 패키지는 대사공학국가지정연구실의 홈페이지(http://mbel.kaist.ac.kr)에서 무료로 다운로드 받을 수 있고, 지금까지 약 30여개국 300여명의 전 세계 대사공학 및 생물학 관련 연구자들이 이용하고 있다. 이러한 성과를 인정받아 시스템 생물학 연구 국제공동체인 SBML의 요청으로 시스템 생물학 국제 공동 연구에 일원으로 참여하게 되었다. 이로써 전 세계 시스템 생물학 및 가상 세포 연구에 주도적 역할을 기대할 수 있게 되었다. 한편, 이 교수팀과 생물정보연구센터는 올해 개발 공개한 대사회로 통합 데이터베이스 시스템인 바이오실리코와 유기적으로 연동할 수 있는 최적 환경을 구축하고 있고, 웹상에서 가상 세포의 동적인 거동을 예측할 수 있는 시스템도 KAIST 박선원 교수팀과 공동으로 개발에 나서고 있다. 향후 완전 자동화된 최종 통합 프로그램은 기업체와 공동으로 상용화할 계획이다.
2004.11.08
조회수 21214
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1