본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%EB%B6%80
최신순
조회순
보이스피싱 심박스 탐지 원천 기술 개발
보이스피싱에 심박스가 악용될 경우 해외에서 온 인터넷전화가 한국 내의 번호로 인식되는 발신 번호 조작에 활용될 수 있다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 이동통신사가 보이스피싱에 사용되는 심박스를 식별할 수 있는 원천기술을 개발했다고 21일 밝혔다. 휴대전화 등 모든 단말기는 이동통신망에 접속할 때 지원 가능한 기능을 이동통신망에 전달한다. 김용대 교수 연구팀은 이러한 기능 중 1,000여 개를 이용해 이동통신 단말 기종을 구분하는 방법을 제안했고 100여 개의 이동통신 단말들의 기종을 분류할 수 있음을 입증했다. 또한, 이 기술을 보이스피싱에 사용되는 심박스에 적용했을 때 일반 휴대전화와 심박스를 명확히 구분할 수 있음을 확인했다. 현재 이동통신사들은 단말기 구분 및 단말 기종의 식별을 위해 모든 단말에 부여된 고유한 15자리 숫자인 단말기고유식별번호(이하 IMEI: International Mobile Equipment Identity)를 사용한다. IMEI는 이동통신망에서 단말 기종을 나타내기 위해 사용되는 8자리 숫자인 TAC(Type Allocation Code, 타입 할당 코드)를 포함한다. 이번 기술의 특징은 일반적인 단말뿐 아니라 악의적인 목적을 가진 다른 기종의 TAC로 변조한 단말들도 이동통신망에서 그 기종을 식별할 수 있다는 것이다. 이러한 특징은 현재 보이스피싱에 악용되고 있는 심박스들을 탐지하기에 유용하다. 심박스들은 IMEI 변조 기능을 지원하기 때문에 이동통신사가 심박스를 휴대전화로 오분류하도록 만들 수 있는데, 기존과 같이 TAC만을 이용해서는 이러한 심박스들을 탐지할 수 없기 때문이다. 이번 기술에서는 단말 기종 식별을 위해 TAC를 사용하지 않기 때문에, 그러므로 심박스가 이를 변조해 이동통신망에 접속하더라도 효과적으로 식별할 수 있다. 휴대전화와 심박스는 개발 과정에서 큰 차이를 보인다. 퀄컴, 삼성 같은 이동통신 칩 개발사는 매년 새로운 기능을 갖는 최신 사양의 칩셋을 제작하고, 이는 최신 휴대전화 제작에 사용된다. 반면 심박스의 경우 전화 기능을 위주로 한 장비이기 때문에, 비교적 저사양의 칩셋을 사용한다. 또한 일반적으로 휴대전화 제조사들은 심박스 제조사들과 달리 칩셋에 존재하는 다양한 기능들을 단말기에 구현한다. 이러한 개발 과정의 차이는 곧 휴대전화와 심박스가 지원하는 기능들의 차이로 이어진다. 연구팀이 개발한 기술에서는 이러한 단말들의 기능 정보들을 기기별 고유정보로 이용해 단말 기종을 분류했다. 그 시험 결과, 100여 종의 휴대전화 모델들이 잘 구분되는 것을 확인했고, 나아가 휴대전화와 심박스 또한 명확히 구분되는 것을 확인했다. 따라서 이번 기술이 이동통신사에 적용되더라도 심박스 탐지에 충분히 사용될 수 있을 것으로 보인다. 전기및전자공학부 오범석, 안준호 연구원이 공동 제1 저자로 참여하고 배상욱, 손민철, 이용화 연구원과 우리 대학 강민석 교수가 함께 참여한 이번 연구는 보안 최우수학회 중 하나인 `NDSS(Network and Distributed System Security)' 심포지움 2023에 채택됐다. (논문명 : Preventing SIM Box Fraud Using Device Model Fingerprinting) 한편 김용대 교수 연구팀은 2012년부터 현재까지 이동통신 보안 분야에서 다양한 연구를 진행했다. 2015년에는 상용 VoLTE 서비스의 10가지 구현 취약점들을 발견해 미국 컴퓨터 침해 사고 대응반(CERT)에 제보했고, 2019년에는 LTE 이동통신 취약점 자동분석 시스템을 개발, 51개의 새로운 취약점을 발견해 통신사 및 제조사들에 해당 문제들을 보고했다. 2022년에는 43개의 휴대전화 이동통신 칩에서 26개의 보안 취약점을 찾아 휴대전화 제조사들에게 보고했다. 공동 제1 저자인 오범석 연구원은 "100여 개의 이동통신 단말들을 이용해 휴대전화와 심박스가 잘 구분되는 것을 확인한 상태다ˮ며, "실제 보이스피싱 기술에 적용하기 위해서는 이동통신사와의 협력을 통해 상용 데이터를 활용한 검증과 기술 고도화가 필요하다ˮ 라고 말했다. 김용대 교수는 "합법적으로 심박스를 사용하는 사업 또한 존재하며 이동통신사에서 심박스를 탐지하는 것도 중요하지만 이 중 불법적으로 이용되는 심박스를 골라내는 것이 더 중요하다”며, "이 기술을 효과적으로 적용하기 위해서는 심박스 등록제가 필요한데 보이스피싱 목적이 아닌 합법적으로 사용되고 있는 심박스들은 사업 목적에 대해 등록을 하면 되고 그렇지 않은 심박스는 미등록 심박스이므로 적발이 가능하다”라고 말했다. 이번 연구는 경찰청 국가개발연구사업 <네트워크 기반 보이스피싱 탐지 및 추적 기술 개발>과 정보통신기획평가원 <정형 및 비교 분석을 통한 자동화된 이동통신 프로토콜 보안성 진단 기술> 사업 그리고 융합보안대학원 사업의 지원을 받아 수행됐다. 아울러, 현재 연구팀은 실제 고객의 피해 방지로 이어질 수 있도록 SK Telecom과 협업 중에 있다.
2023.03.21
조회수 418
생생한 3차원 실사 이미지 구현하는 ‘메타브레인’ 개발
우리 대학 전기및전자공학부 유회준 교수 연구팀이 실사에 가까운 이미지를 렌더링할 수 있는 인공지능 기반 3D 렌더링을 모바일 기기에서 구현, 고속, 저전력 인공지능(AI: Artificial Intelligent) 반도체*인 메타브레인(MetaVRain)’을 세계 최초로 개발했다고 7일 밝혔다. * 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체 연구팀이 개발한 인공지능 반도체는 GPU로 구동되는 기존 레이 트레이싱 (ray-tracing)* 기반 3D 렌더링을 새로 제작된 AI 반도체 상에서 인공지능 기반 3차원으로 만들어, 기존의 막대한 비용이 들어가는 3차원 영상 캡쳐 스튜디오가 필요없게 되므로 3D 모델 제작에 드는 비용을 크게 줄이고, 사용되는 메모리를 180배 이상 줄일 수 있다. 특히 블렌더(Blender) 등의 복잡한 소프트웨어를 사용하던 기존 3D 그래픽 편집과 디자인을 간단한 인공지능 학습만으로 대체하여, 일반인도 손쉽게 원하는 스타일을 입히고 편집할 수 있다는 장점이 있다. *레이 트레이싱 (ray-tracing): 광원, 물체의 형태, 질감에 따라 바뀌는 모든 광선의 궤적을 추적함으로써 실사에 가까운 이미지를 얻도록 하는 기술 한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 2월 18일부터 22일까지 전 세계 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문번호 2.7, 논문명: 메타브레인: A 133mW Real-time Hyper-realistic 3D NeRF Processor with 1D-2D Hybrid Neural Engines for Metaverse on Mobile Devices (저자: 한동현, 류준하, 김상엽, 김상진, 유회준)) 유 교수팀은 인공지능을 통해 3D 렌더링을 구현할 때 발생하는 비효율적인 연산들을 발견하고 이를 줄이기 위해 사람의 시각적 인식 방식을 결합한 새로운 컨셉의 반도체를 개발했다. 사람은 사물을 기억할 때, 대략적인 윤곽에서 시작하여, 점점 그 형태를 구체화하는 과정과 바로 직전에 보았던 물체라면 이를 토대로 현재의 물체가 어떻게 생겼는지 바로 추측하는 인지능을 가지고 있다. 이러한 사람의 인지 과정을 모방하여, 새롭게 개발한 반도체는 저해상도 복셀을 통해 미리 사물의 대략적인 형태를 파악하고, 과거 렌더링했던 결과를 토대로, 현재 렌더링할 때 필요한 연산량을 최소화하는 연산 방식을 채택하였다. 유 교수팀이 개발한 메타브레인은 사람의 시각적 인식 과정을 모방한 하드웨어 아키텍처뿐만 아니라 최첨단 CMOS 칩을 함께 개발하여, 세계 최고의 성능을 달성하였다. 메타브레인은 인공지능 기반 3D 렌더링 기술에 최적화되어, 최대 100 FPS 이상의 렌더링 속도를 달성하였으며, 이는 기존 GPU보다 911배 빠른 속도다. 뿐만아니라, 1개 영상화면 처리 당 소모에너지를 나타내는 에너지효율 역시 GPU 대비 26,400배 높인 연구 결과로 VR/AR 헤드셋, 모바일 기기에서도 인공지능 기반 실시간 렌더링의 가능성을 열었다. 연구팀은 메타브레인의 활용 예시를 보여주고자, 스마트 3D 렌더링 응용시스템을 함께 개발하였으며, 사용자가 선호하는 스타일에 맞춰, 3D 모델의 스타일을 바꾸는 예제를 보여주었다. 인공지능에게 원하는 스타일의 이미지를 주고 재학습만 수행하면 되기 때문에, 복잡한 소프트웨어의 도움 없이도 손쉽게 3D 모델의 스타일을 손쉽게 바꿀 수 있다. 유 교수팀이 구현한 응용시스템의 예시 이외에도, 사용자의 얼굴을 본떠 만든 실제에 가까운 3D 아바타를 만들거나, 각종 구조물들의 3D 모델을 만들고 영화 제작 환경에 맞춰 날씨를 바꾸는 등 다양한 응용 예시가 가능할 것으로 기대된다. 연구팀은 메타브레인을 시작으로, 앞으로의 3D 그래픽스 분야 역시 인공지능으로 대체되기 시작할 것으로 기대한다며, 인공지능과 3D 그래픽스의 결합은 메타버스 실현을 위한 큰 기술적 혁신이라는 점을 밝혔다. 연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 3D 그래픽스는 사람이 사물을 어떻게 보고 있는지가 아니라, 사물이 어떻게 생겼는지를 묘사하는데 집중하고 있다”라며 “이번 연구는 인공지능이 사람의 공간 인지 능력을 모방하여 사람이 사물을 인식하고 표현하는 방법을 차용함으로써 효율적인 3D 그래픽스를 가능케 한 연구”라고 본 연구의 의의를 밝혔다. 또한 “메타버스의 실현은 본 연구에서 보인 것처럼 인공지능 기술의 혁신과 인공지능 반도체의 혁신이 함께 이루어질 것”이라 미래를 전망하였다. 데모 동영상 유튜브 주소: https://www.youtube.com/watch?v=m-aqnZhALv0
2023.03.07
조회수 1238
유회준 교수, ISSCC 반도체 설계 최고 권위자로 선정
국제고체회로학회(International Solid-State Circuits Conference, 이하 ISSCC)는 세계 반도체올림픽이라고 불리며 70주년 기념식을 올해 2월 20일 미국 샌프란시스코 메리어트 호텔에서 개최했다. 우리 대학 전기및전자공학부 유회준 교수가 63편의 논문을 발표한 실적으로 동양인으로서 유일하게 톱5에 들어 최다 논문 발표자로 선정되었다고 1일 밝혔다. 유 교수는 ISSCC의 설립 41년이 지난 1995년에 현대전자(現 SK하이닉스)에서 세계 최초로 256M SDRAM을 개발한 뒤 이를 동 학회에서 한국 최초 논문을 발표한 바 있다. 이후 유 교수 연구팀은 KAIST로 옮겨 2000년부터 2023년까지 62편의 논문을 발표하여 동 학회에서 총 63편의 논문을 발표했다. 1996년에 유 교수가 집필한 `DRAM의 설계'라는 책은 삼성전자나 하이닉스 기술자들의 필독서로 활용됐다. 또한, 동 학회에서 DRAM 관련 반도체에 대해 5편, 바이오메디컬용 반도체 및 저전력 무선 통신용 칩에 대해 총 26편, 증강현실(AR)용 웨어러블 반도체에 대해 총 14편 발표했다. 특히 2008년부터 인공지능 반도체를 연구하기 시작해 2014년 세계 최초로 DNN 가속기를 발표하는 등 올해까지 총 18 편의 인공지능(이하 AI) 반도체 관련 연구 결과를 동 학회에서 발표했다. 아울러, 아시아 교수로는 최초로 2019년 AI 반도체에 관련한 ISSCC 기조강연자로 초청되기도 하였다. 올해는 특히 트랜지스터의 발명 75주년이기도 한데 이를 기념하기 위해 국제전기전자공학회 (IEEE) 전자소자학회/고체회로학회 (EDS/SSCS) 에서 10인의 대표강연자를 선정하여 세계 순회 강연을 계획 중에 있으며 이 중 1인으로 유 교수가 선정됐다. 또한 올해는 모든 반도체 제조에 이용되는 모스펫(이하 MOSFET)발명 60주년이기도 한데 MOSFET의 발명자인 강대원 박사를 기리는 강대원 상을 올해 2월 14일에 한국반도체 학술대회에서 수상하기도 했다. 올해 ISSCC 학회에서는 DRAM을 이용한 지능형 반도체(이하 PIM 반도체)인 다이나플라지아(DynaPlasia), 뉴로모픽 반도체인 스파이크 인공신경망(SNN, Spike Neural Network)과 기존의 합성곱 인공신경망(CNN, Convolutional Neural Network)을 결합해 저전력으로 동작하는 상보 심층신경망(C-DNN), 그리고 3차원 영상 제작 및 가속의 혁명을 가져올 NeRF(Neural Radiance Fields) 가속 칩을 세계 최초로 개발해 총 3편의 혁신적인 새로운 연구 방향을 제시하는 논문들을 발표하여 매우 우수하다는 평가를 받았다. 유 교수의 연구 결과에 대해 일본 동경대 전자공학과 학과장인 타케우치 교수는 "항상 새로운 방향을 제시하는 연구를 발표하는 것이 존경스럽다"고 했으며 미국 MIT 공대 학장인 아난싸 찬드라카산 교수는 "끊임없이 좋은 연구 결과를 내는 그 비결을 알고 싶다"며 찬사를 보내고 있다. 유 교수의 연구 결과는 삼성전자에 기술이전 되기도 했고, 특히 5개의 국내 대표 AI 반도체 벤처 창업들이 있다. 이중 `리벨리온'은 최근 챗GPT용 가속 인공지능 칩인 아톰칩(ATOM)을 개발해 KT와 함께 상용화를 하고 있으며 `모빌린트'는 자동차용 인공지능 칩을 개발하여 2023년 CES에서 선보이기도 했다. 유회준 교수는 2022년 6월에 과기정통부의 지원으로 PIM반도체 설계연구센터(AI-PIM)을 KAIST에 설립해 한국의 PIM반도체 연구의 허브로서 한국 메모리 산업, 시스템 반도체 기술의 업그레이드와 미래 도약 발판을 위해 아직도 왕성한 연구 의욕을 불태우고 있다.
2023.03.02
조회수 728
방사선에도 문제없는 초저에너지 메모리 최초 개발
지상에서 잘 동작하던 반도체 메모리가 우주나 비행기 안에서 갑자기 오동작을 일으키는 일이 있는데, 이는 고고도에 존재하는 방사선 때문이다. 이 뿐만 아니라, 최근 자율 주행 운송 수단과 같이 사람의 안전이 중요한 장치에 사용되는 반도체 메모리도 대기 방사선에 의해 오동작할 확률이 있다는 연구 결과들이 보고되면서 방사선에 대해 높은 안정성을 갖는 메모리 소자의 중요성이 점차 증가하고 있다. 우리 대학 전기및전자공학부 윤준보 교수 연구팀이 나노종합기술원(원장 이조원) 강민호 박사와의 협업을 통해 우주 부품 수준의 내방사선 특성을 가지면서도 일반적인 비휘발성 플래시 메모리보다 30,000배 이상 프로그래밍 에너지가 낮은 나노 전자 기계식 비휘발성 메모리 소자를 세계 최초로 개발했다고 28일 밝혔다. 전기및전자공학부 이용복 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 2023년 1월호에 출판됐다. (논문명: Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory). (Impact Factor : 17.690). (https://www.nature.com/articles/s41467-023-36076-0) 반도체 메모리 소자들은 동작 원리상 근본적으로 방사선에 취약해, 이를 보완하기 위해서는 복잡한 회로나 추가적인 데이터 프로세싱을 수반하는데 그 과정에서 많은 에너지가 소모된다. 즉, 일반적인 반도체 메모리 소자들은 내방사선과 낮은 동작 에너지를 동시에 만족하는 것이 매우 어렵다는 것을 의미한다. 윤준보 교수 연구팀은 방사선에 원천적으로 강인한 특성을 가진 나노 전자 기계 기술(Nano Electro Mechanical System, NEMS)을 활용해 고에너지 방사선에도 강인할 뿐만 아니라 매우 낮은 프로그래밍 에너지를 가지고, 전원이 공급되지 않아도 저장된 정보를 유지할 수 있는 비휘발성 메모리 소자를 세계 최초로 개발했다. 연구팀은 반도체 메모리를 사용하는 대신, 나노 크기의 매우 작은 기계 구조에 전기 신호를 가함으로써 나노 기계 구조체가 실제로 움직여서 하부 전극에 붙고 떨어지는 방식을 사용하였다. 또한, 매우 낮은 프로그래밍 에너지를 달성하기 위해 파이프-클립 스프링 구조와 구부러진 외팔보 구조로 구성된 상부 전극을 도입했으며, 특히 파이프-클립 모양의 나노 기계 구조에 전류를 가해 열을 내는 구동 방식을 통해 프로그램된 구조체가 초기 상태로 복구할 수 있도록 하여 반복적인 프로그램 동작에도 낮은 프로그래밍 에너지를 유지할 수 있도록 하였다. 연구진은 나노종합기술원의 반도체 장비·시설 인프라를 활용해 8인치 웨이퍼 수준의 대면적 기판에 신뢰적으로 소자를 제작했고, 제작한 나노 전자 기계식 비휘발성 메모리의 프로그래밍 에너지는 차세대 메모리들과 비교했을 때도 매우 낮은 수준이었다. 또한, 기계적인 움직임을 기반으로 하는 동작 방식 덕분에 고에너지 방사선 조사 후에도 누설 전류 증가, 동작 전압 변화, 비트 오작동 등의 성능 저하 없이 우수한 내방사선 특성을 보였다. 연구개발에 주도적으로 참여한 이용복 박사과정은 “이번 연구 결과는 연구팀이 보유한 나노 전자 기계 설계 기술과 나노종합기술원의 첨단 공정 기술이 만나 내방사선 특성과 낮은 동작 에너지 소모를 동시에 만족하는 비휘발성 메모리를 세계 최초로 구현했다는 점에서 중요한 의미를 가지고, 해당 기술은 우주 환경에서의 인공지능, 초안정성 자율주행 시스템 등 내방사선과 높은 에너지 효율성이 필요한 다양한 미래 응용 분야에서 핵심 기술이 될 것” 이라고 말했다. 또한, “세계 차세대 반도체 시장에서 우리나라가 메모리 원천 기술을 선도할 수 있도록 기여하고 싶다”며 앞으로의 계획을 밝혔다. 해당 기술과 관련해 미국, 중국, 대만, 한국 등에 6건의 특허가 출원돼 있다. 한편, 이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업과 삼성전자의 지원을 받아 수행됐다.
2023.02.28
조회수 762
퓨처모빌리티 기술교류회 개최
우리 대학이 28일 대전 본원 학술문화관 일대에서 '2023 퓨처모빌리티 기술교류회'를 개최한다.우리 대학과 한국자율주행산업협회(이하, KAAMI), 한국자동차연구원(이하, KATECH)이 공동 주최하는 이번 행사는 한국의 미래 성장동력인 모빌리티산업의 발전과 글로벌 주도권 확보를 위해 마련됐다. 정부-산업계-선도대학-연구소 간의 견고한 협력의 장을 만들기 위해 모빌리티 분야의 제품·기술투어 및 네트워킹, 산학연 핵심기술 교류회, 스타트업 피칭 등 다양한 프로그램이 진행될 예정이다. 대전 본원 학술문화관 실내·외에서 진행되는 모빌리티 기술 및 제품이 전시에는 총 42개 팀이 참여한다. KAAMI에서는 18개의 모빌리티 관련 기업이 제품을 전시해 기술력을 자랑한다. 도심형 근거리 운송 콘셉트카, 자율주행 플랫폼 및 차량 등을 전시하고 자율주행 시뮬레이션 영상, 라이다 센서를 활용한 도로 교통 인프라 시스템 시연 등이 포함되어 있다. KATECH에서는 산업부 지원으로 개발된 자율셔틀, 자율수소버스, 수소택시의 차량 및 핵심부품을 공개한다. 우리 대학에서는 21개 연구팀이 최신 연구 기술을 공유한다. 전기및전자공학부에서는 자율주행 데이터에 활용할 수 있는 인공지능기술 중심으로 교통인프라 지능 제어기술, 통신 및 차량 레이더를 이용한 밀리미터파 백스케터*, 자율주행 데이터 수집, 첨단 모빌리티 기술 제품 등이 전시될 예정이다. * 밀리터리파 백스케터(mmWave backscatter): 초고주파 신호의 후방산란을 통해 통신하는 초저전력 통신기술 조천식모빌리티대학원에서는 인공지능 및 디지털트윈을 활용한 미래 자율주행 차량 기술과 교통운영 기술을 소개하고, 이를 체험할 수 있는 시스템을 전시할 예정이다. 또한, 10시부터는 미래 모빌리티 기술을 이끌어갈 우리 대학 재학생과 스타트업 및 관련 기업에서 기술 피칭을 진행한다. 이들은, 소형 전기 상용차의 안정성 강화·자동차 사이버 보안·인공지능 기반 차량 실내 모니터링 등에 관한 9개의 도전적인 연구 성과들을 소개할 예정이다. 오후 1시부터는 본격적인 산학연 교류를 위한 프로그램이 이어진다. 박동일 산업자원통상부 국장의 '미래자동차 산업정책 방향'과 기아 강주엽 상무의 '기아의 트랜스포메이션 전략' 기조 강연을 시작으로 산·학·연을 대표해 문희석 KAAMI 사무국장과 강준혁 KAIST 전기및전자공학부 학부장, 김현철 KATECH 부원장이 발표자로 나서 긴밀하고 전략적인 상호협력을 주제로 발표한다. 또한, 이광형 KAIST 총장, 조성환 한국자율주행산업협회장(現현대모비스 대표이사), 나승식 한국자동차연구원장이 모빌리티 산업 대도약을 위한 산학연 협력을 도모하기 위한 MOU도 체결한다. 두 번째 세션에서는 산학연이 연합한 네 개의 연구개발협력 그룹이 모빌리티 기술 현황 및 향후 발전 방향을 발표한다. ▴소프트웨어·인공지능 분야에서는 곽수진 KATECH 부문장이 '모빌리티 산업생태계 활성화를 위한 데이터 플랫폼 구축방안'을 주제로 발표한다. 곽 부문장은 순수 국내 기술 기반으로 완성한 레벨3 자율주행 기술이 포함된 수소전기버스와 운전자 개입 없이 대중교통 서비스를 제공하는 미래형 자율주행 셔틀 기술을 소개한다. 이와 함께 연구원이 자체 개발한 전자 아키텍처와 고성능 제어기를 바탕으로 재구성된 SDV* 실증차량 기술도 함께 다룬다. ** SDV(Software Defined Vehicle): 소프트웨어로 하드웨어를 제어하고 관리하는 자동차 ▴미래 교통 인프라·반도체 분야에서는 김주영 KAIST 전기및전자공학부 교수(하이퍼엑셀 대표이사)가 '거대 모델-생성 인공지능(AI)으로의 대전환과 자율주행 반도체의 미래'를 주제 발표한다. 거대 모델 연산을 가속하기 위한 새로운 반도체 기술을 세계 최초로 제안하고 자율 주행차의 시각 인식, 사용자 멀티모달 인터페이스* 등에 적용할 수 있는 거대 모델을 전망한다. *** 멀티모달(multimodal interface): 음성, 제스처, 터치 등 생체 인식을 포함한 여러 가지 도구로 데이터의 입출력 하는 장치 또한, 김인희 KAIST 조천식 모빌리티대학원 교수가 '자율주행을 위한 메타버스의 역할'을 발표한다. 실제와 매우 유사한 환경을 구현한 메타버스 공간 안에서 자율주행차량, 일반차량, 보행자 등이 안전하게 공존할 수 있는 플랫폼 개발 성과를 소개한다. ▴로보틱스 분야에서는 노민균 KAIST 기계공학과 교수가 '미래 모빌리티와 전기모터'를 주제로 퓨처모빌리티를 위한 고효율 고출력밀도 전기모터 기술의 동향과 어플리케이션 특화형 구동기에 응용될 수 있는 자기부상 및 다자유도 모터 연구를 발표한다. ▴모빌리티 서비스 분야에서는 유민상 오토노머스에이투지 상무가 발제자로 나서 '자율주행 산업 동향과 상용화 전개 방향'을 주제로 다룬다. 유 상무는 완전자율주행(레벨4) 상용화에 대비한 대중교통과 물류산업의 정책 및 산업 전개와 체감형 마스*를 중심으로 국민의 일상에서 체험할 수 있는 자율주행 체험 사업 등을 소개한다. **** 마스(Mobility as a Service, MaaS): 서비스로서의 이동 수단 마지막 세션에서는 '글로벌 탑을 위한 퓨처모빌리티 발전방안'을 주제로 산학연 전문가들이 패널 토론을 진행한다. 이를 위해, 강주엽 기아자동차 상무와 자율주행 스타트업인 모라이 홍준 대표, 송세경 KAIST 산학협력중점교수, 문희석 KAAMI 국장, 김규옥 한국교통연구원 박사, 최재범 HL클레무브 실장이 전문가 패널로 참여해 청중 Q&A와 함께 열띤 토론을 전개한다. 퓨처모빌리티 산학연 기술교류회 조직위원회(위원장 강준혁 KAIST 전기및전자공학부 학부장, 문희석 KAAMI 사무국장, 이재관 KATECH 연구소장 이하 조직위)는 "산학연을 포함한 정·관계 간 상호 전략적 협력관계를 구축해 대한민국의 미래 모빌리티 산업이 대도약하고 글로벌 주도권을 선점할 수 있는 발판을 마련하기 위해 이번 산학연 기술교류회를 준비했다"라고 밝혔다. 강준혁 KAIST 조직위원장은 "올해 첫 행사를 시작으로 산학연이 연구개발로 협력할 수 있는 체계 및 분야별 연구개발협력 그룹을 만들어 정기적으로 교류하고 모빌리티 산업을 선도할 핵심기술개발과 전문인재 양성 프로그램을 도입해 매년 세계가 주목하는 기술교류회로 발전시켜 나가겠다"라고 전했다.28일 KAIST 대전 본원 학술문화관 일대에서 현장 진행되는 이번 행사는 유튜브 'KAIST 전기및전자공학부' 채널에서 주요 세션이 실시간 중계된다.
2023.02.24
조회수 643
심현철 교수팀, 현대자동차와 자율주행 파트너십 체결
우리 대학이 현대자동차와 '고속 자율주행 기술 연구를 위한 파트너십' 계약을 23일 체결했다. 심현철 전기및전자공학부 교수팀과 체결한 이번 계약은 현대차가 우리 대학에 연구비를 지원하고, 우리 대학은 고속 자율주행 기술과 관련된 전문 지식과 경험 등을 공유하고 홍보에 협조하는 내용을 골자로 한다. 심 교수팀은 국내에 자율주행기술이 보편화되기 이전인 2009년부터 자율주행 연구를 시작한 국내 자율주행 1세대 연구실이다. 지난 15년여간 지속적인 연구를 통해 '2021 현대자동차그룹 자율주행 챌린지'에서 우승하고 과학기술정보통신부가 주최하는 '인공지능 그랜드 챌린지 제어지능부문'에서 2년 연속('19~'20)으로 우승해 국토부 및 과기부 장관 표창을 받는 등 무인 시스템 분야에서 두각을 나타냈다. 또한, 2021년에는 시속 300km가 넘는 속도로 달리는 고속 자율주행 차량 경주대회인 '인디 자율주행 챌린지(Indy Autonomous Challenge, 이하 IAC)'에 아시아 유일 팀으로 참가해 4위에 입상했다. IAC와 이어지는 'CES 자율주행 챌린지'에도 2년 연속 아시아 유일팀으로 출전해 독일과 이탈리아 등 레이싱 강국의 연구팀과 대등하게 경쟁하며 국제적인 기술력을 인정받았다. 지난 1월 열린 대회 성과를 바탕으로 다음 열리는 대회의 출전권을 획득해 올해 6월 이탈리아 몬짜(Monza) 트랙에서 열리는 대회와 내년 CES 대회에도 계속 참가할 계획이다. 성낙섭 현대자동차 연구개발경영기획실장(상무)은 "이번 파트너십을 토대로 고속 자율주행에 관한 연구가 고속 차량뿐 아니라 일반 자율주행 차량의 안전성과 성능을 높이는 계기가 될 것을 기대한다"라고 말했다. 이어, "많은 어려움 속에서도 아시아에서 유일하게 세계 무대에 도전장을 내민 KAIST 심현철 교수팀의 고속 자율주행 기술 연구에 힘을 보태겠다"고 덧붙였다. 심현철 교수는 "2010년부터 국내 자율주행대회를 계속 개최하고 여러 대학의 연구를 지원해 국내 자율주행 기술 저변 확대를 위해 힘쓰고 있는 현대자동차의 후원을 받게 되어 영광이다"라고 소감을 밝히고 "향후 이탈리아와 미국에서 개최되는 대회에서는 이번 지원에 힘입어 더욱 좋은 성과를 낼 수 있을 것으로 기대하고 있다"라고 소감을 밝혔다. 23일(목) 경기도 화성시 롤링힐스 호텔에서 열린 체결식에는 현대차 성낙섭 상무와 KAIST 심현철 전기및전자공학부 교수 및 연구진 등 주요 관계자들이 참석한 가운데 진행됐다.
2023.02.23
조회수 966
도심에서 무력화 가능한 안티드론 기술 개발
최근 각국 정부는 공항과 국가 중요 시설에서 무인 항공기를 이용한 테러를 방지하기 위해 다양한 안티드론 시스템을 구축하고 있다. 드론을 추락시키거나 원하는 방향으로 제어하는 안티드론 기술은 드론의 다양한 보안 취약점을 이용하여 구현이 가능하다. 우크라이나-러시아 전쟁은 안티드론 기술의 평가장이 되고 있다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 도심에서 사용이 가능한 협대역 전자기파*를 원격에서 드론의 회로에 주입해 드론을 즉각적으로 무력화하는 안티드론 기술을 개발했다고 31일 밝혔다. * 기존에 사용되는 광대역 전자기파을 이용한 안티드론 기술은 주변의 전자·전기 장치에 피해를 일으켜, 도심사용이 어렵다는 점을 개선하여 매우 좁은 대역의 협대역전자기파를 이용한 안티드론 기술은 목표 드론 기종에만 그 효과를 한정할 수 있게 해준다. 김 교수 연구팀은 드론 제조사의 제어 유닛 보드가 전자파 주입에 따른 민감도가 다르다는 것을 발견하였고 각 제조사별 수집된 민감도를 극대화한 주파수를 분석하였다. 이를 통하여 매우 좁은 대역의 협대역전자파를 주입하더라도 원격에서 드론을 즉각적으로 무력화시킬 수 있음을 입증했다. 이번 기술의 특징은 이렇게 좁은 대역으로 특정 주파수로 전자파 주입을 할 경우 기존의 안티드론 기술과 달리, 주변 전자 장치에 미치는 영향을 최소화할 수 있어, 도심에서도 적용 가능한 안티드론 기술이라고 할 수 있다. 뿐만 아니라 같은 제어 유닛 보드를 사용하는 드론들을 이용한 군집 드론 공격 시 이들 드론을 동시에 추락시킬 수 있다. 즉, A 기종을 사용하는 100개의 적 드론과 B 기종을 사용하는 100개의 아군 드론이 동시에 비행하고 있을 때 아군 드론은 전혀 영향을 받지 않으면서 100개의 적 드론을 모두 격추시킬 수 있는 기술로 평가된다. 우리 대학 장준하 연구원과 조만기 연구원이 공동 제1 저자로 참여한 이번 연구는 보안최우수학회 중 하나인 `NDSS (Network and Distributed System Security)' 심포지움 2023에 채택됐다. (논문명 : Paralyzing Drones via EMI Signal Injection on Sensory Communication Channels) 드론의 구동을 위하여 관성 계측 장치(IMU)는 다양한 센서값들을 제어 유닛 보드에 전달을 한다. 제어 유닛 보드는 이 센서값들을 제어 알고리즘에 적용하여 다음 번 드론의 움직임, 즉 로터의 회전수나 드론의 자세를 계산한다. 이 연구의 핵심 아이디어는 이 관성 계측 장치와 제어 유닛 보드 간의 통신을 방해시키면 제대로된 센서값을 받을 수 없고, 이 경우 다음 번 드론의 제어가 불가능해 진다는 것이다. 이 통신을 방해하기 위한 기술로 연구팀은 전자파 간섭(EMI) 취약점을 갖는 제어 유닛 보드에 대한 전자파 주입을 선택했다. 실험을 통하여 동종의 제어 유닛 보드는 같은 주파수의 전자파에 민감하다는 것을 발견하였고, 이를 이용하여 협대역의 전자기파를 주입할 경우, 주변 전자 장치에 영향을 끼치지 않을 뿐 아니라, 군집 드론 공격에 효과적으로 대응할 수 있는 점을 발견하였다. 한편 김용대 교수 연구팀은 2015년 소리를 관성 계측 장치에 포함된 평형센서인 자이로스코프(Gyroscope) 센서에 주입하여 드론을 떨어뜨릴 수 있는 기술을 개발했었다. 2015년 연구와 이번 연구는 깊은 연관을 가지고 있다. 2015년 연구는 달팽이관(정확히는 세반고리관)에 문제가 생길 경우 인간이 평형을 유지하기 힘들다는 것과 유사한 원리라고 할 수 있다. 이번 연구는 달팽이관에 문제를 일으키는 것이 아니라 달팽이관에서 뇌로 연결되는 신경망을 잠시 막을 경우에도 인간이 평형을 유지하기 힘든 것과 비슷한 원리라고 할 수 있다. 연구팀은 실내 전자파 차폐 시설을 이용해 10m 거리에서 호버링 비행 중인 드론을 즉각적으로 추락시킬 수 있음을 확인했으며, 공격 거리와 요구 전력 간의 관계를 도출했다. 10m 이상의 거리에 대해선 시뮬레이션을 통해 가능함을 확인했다. 공동 제1 저자인 장준하 연구원은 "드론 제어 유닛 보드의 전자파 간섭(EMI) 취약성을 이용하면 특정 영역의 드론들을 즉시 무력화하는 안티드론 기술로 활용할 수 있음을 보였다ˮ며, "또한 이는 기존의 안티드론 기술이 가지는 주변 전자 장치에 대한 영향을 문제를 해결한 도심에서 적용 가능한 안티드론 기술이며 고도화 연구를 통해 자폭 드론, 집단 드론 공격 등으로부터 국민을 보호하는 기술로 활용할 수 있을 것이다ˮ 라고 말했다. 김용대 교수는 “원천 연구가 이제 끝난 시점이고 실용화 연구를 통해 실제 제품 개발까지 이어질 수 있을지 확인이 필요하다”며, “추가로 제어 유닛 보드와 IMU 센서 간의 통신 회로 뿐 아니라 다른 회로의 취약점에 대한 연구도 필요한 시점이다”라고 말했다. 이번 연구는 한국연구재단 무인이동체 보안을 위한 항재밍 및 무허가 무인이동체 탐지대응 기술 개발 사업과 정보통신기술기획원 융합보안 핵심인재 양성사업 그리고 미 공군과학연구실의 지원을 받아 수행됐다.
2023.01.31
조회수 1077
획기적 음의 정전용량 플래시 메모리 최초 개발
우리 대학 전기및전자공학부 전상훈 교수 연구팀이 `음의 정전용량 효과(Negative Capacitance Effect, 이하 NC 효과)*'를 활용해 기존 플래시 메모리의 물리적 성능 한계를 뛰어넘는 음의 정전용량 플래시 메모리 (NC-Flash Memory)를 세계 최초로 개발했다고 18일 밝혔다. *음의 정전용량 효과: 음의 정전용량 현상은 인가되는 전압이 증가하면 전하량이 감소함을 의미한다. 음의 정전용량 특성을 가지는 유전체 사용시, 트랜지스터에 인가되는 전압을 내부적으로 증폭하여 상대적으로 낮은 동작전압을 사용할 수 있어, 파워소모를 줄일 수 있다. 전기및전자공학부 김태호 박사과정과 김기욱 박사과정이 공동 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2022년 12월호에 출판됐다. (논문명 : The Opportunity of Negative Capacitance Behavior in Flash Memory for High-Density and Energy-Efficient In-Memory Computing Applications) 이 국제학술지는 독일 와일리 출판사(Wiley-VCH)에서 발행하는 피어리뷰 과학 저널이다. (Impact Factor : 19.924) 현대 전자 소자에서 축전기(Capacitor)는 매우 중요한 구성 요소의 하나로, 전자 소자가 소형화되고 수직 방향으로 적층 되면서 축전기에 저장되는 전하량(Charge, Q)이 감소하는 문제가 생기므로 높은 정전용량(Capacitance, C)을 가진 유전체 물질이 필수적으로 요구되고 있다. 여기에 일반적인 축전기와 다르게 정전용량이 음의 값을 갖는(Negative Capacitance) 축전기를 활용한다면 다층의 축전기의 전체 정전용량을 오히려 더 증가시킬 수 있고, 차세대 소자에 적합한 높은 정전용량 소자 개발 난제를 해결할 수 있을 것이라는 가설이 제안되었다. 최근 메모리 공급업체들은 데이터의 폭발적 증가와 더 높은 용량의 솔리드 스테이트 드라이브(SSD) 및 더 빠른 액세스 시간에 대한 요구로 인해 기술 경쟁을 치열하게 하고 있다. 스토리지의 핵심 기술인 3D 낸드 플래시는 지속적으로 더 높은 층을 적층할 수 있는 기술을 요구하고 있고, 2028년에는 1,000단 이상의 메모리 적층이 필요할 것으로 예상되고 있다. 한편, 강유전체* 물질에서 보이는 `음의 정전용량 효과(NC 효과)'은 전자 소자에 인가된 외부 전압을 내부적으로 증폭해 전력 소모를 줄이는 특성이 있어, 전자 소자의 물리적 성능 한계를 극복할 수 있다는 가능성이 제시됐다. 최근 페로브스카이트 강유전체에서 NC 효과를 실험적으로 관찰했으나, 페로브스카이트 강유전체의 소형화 한계 및 CMOS 공정과의 부적합성으로 인해 NC 효과를 활용한 전자 소자의 구현에 대해 상당한 회의론을 불러일으켰다. *강유전체: 전기적으로는 절연체이지만 자연상태에서 외부 전기장이 없어도 전기 편극을 지닐 수 있는 특이한 물리적 성질을 가진 물질 전상훈 교수 연구팀은 기존 플래시 메모리의 물리적 성능 한계를 극복하고 동작전압을 낮추기 위해, 반도체 공정에 사용되는 하프늄옥사이드(HfO2) 강유전체 박막의 NC 효과를 안정화해 저전압 구동이 가능한 강유전체 소재의 NC-플래시 메모리를 세계 최초로 개발했다. 개발된 NC-플래시 메모리는 기존 플래시 메모리 대비 전력 소모가 10,000배 이상 낮은 저전력 고성능 특성을 달성했다. 연구팀은 그뿐만 아니라 기존 컴퓨팅 구조인 폰노이만 아키텍처를 대체하여 새롭게 지향하는 인메모리 컴퓨팅을 NC-플래시 메모리를 기반으로 구현해 세계 최고 수준의 에너지 효율 또한 달성했다. 이번 연구 결과는 빠른 스토리지를 필요로 하는 최신 컴퓨팅과 네트워킹의 요구를 충족하는 차세대 낸드 플래시 메모리 개발에 있어 핵심 역할을 할 것이다. 한편, 이번 연구는 연세대학교와 협업을 통해서 이루어졌고, 한국 연구재단 지능형 반도체 기술개발사업의 지원을 받아 수행됐다.
2023.01.18
조회수 997
3D 프린팅 기반의 뇌 이식용 뉴럴 프로브 공정 기술 개발
우리 대학 전기 및 전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis) 연구팀과의 공동 연구를 통해 3D 프린팅 기반의 광유전학 뉴럴 프로브 공정 기술을 개발했다고 밝혔다. 광유전학은 빛을 사용해 목표로 하는 특정 신경세포를 선택적으로 정교하게 조절할 수 있는 기술로서 뇌 연구 및 뇌질환 치료분야에서 많은 각광을 받고 있다. 뇌에 광유전학을 적용하기 위해서는 빛을 목표 신경회로에 정확히 전달할 수 있는 장치가 요구된다. 따라서 서로 다른 광유전학 기반 뇌 연구 실험을 진행할 때마다 실험 대상 동물과 목표 신경회로의 위치에 최적화된 디자인을 갖는 뇌 이식용 뉴럴 프로브가 필요하다. 반도체 공정 기반의 광전자 뉴럴 프로브는 실험 목적에 맞게 길이와 형태를 설정하여 제작할 수 있어 광유전학 연구에서 널리 사용되고 있다. 하지만 반도체 공정은 많은 기반 시설과 전문성이 요구되어 신경과학자가 직접 접근하기 힘들다. 또한 공정에 많은 시간과 비용이 필요하여 새로운 디자인의 프로브를 빠르고 저렴하게 개발하기 어렵다. 연구팀은 뉴럴 프로브 공정에 3D 프린팅을 도입하여 이러한 문제를 극복했다. 개발된 공정은 단순하고 소요 시간이 짧으며, 비싼 반도체 공정 장비와 재료가 전혀 사용되지 않아 개당 약 1000원의 가격으로 생산이 가능하다 (참고: 상용 실리콘 프로브: 약 50000원 이상). 본 공정기술을 이용하면 3D 구조 설계 소프트웨어를 활용하여 누구나 손쉽게 뉴럴 프로브의 디자인을 수정하고 제작할 수 있어 다양한 동물의 목표 뇌신경회로에 최적화된 디바이스를 빠르게 구현할 수 있다. 3D 프린팅으로 제작된 프로브는 소형 무선 통신 모듈과 결합하여 무선 광유전학을 구현할 수 있도록 개발되었다. 무선 통신 모듈을 제어하는 스마트폰 앱도 개발하여 사용자의 편의성을 도모하였다. 연구팀은 본 기술이 신경과학 커뮤니티에서 누구나 활용할 수 있도록 개발 프로토콜을 제시했다. 프로토콜에는 광유전학 뉴럴 프로브와 무선 통신 모듈의 제작 과정뿐만 아니라 스마트폰 앱 사용법과 프로브 이식 수술 방법이 포함되어 있다. 3D 프린팅 기반의 본 제작기술은 광유전학 프로브 제작의 접근성, 용이성 및 활용성을 크게 높일 수 있어 다양한 뇌과학 및 신경과학 연구에 크게 기여할 수 있을 것으로 기대된다. 전기및전자공학부 이주현 박사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 프로토콜스 (Nature Protocols)' 1월 字 표지 논문으로 게재됐다. (논문명 : Customizable, wireless and implantable neural probe design and fabrication via 3D printing). 이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단의 중견연구자지원사업 및 바이오의료기술개발사업, 미국 국립보건원 및 뇌&행동 연구재단의 지원을 받아 수행됐다.
2023.01.18
조회수 898
반도체 분야 세계적인 국제학술대회 디자인콘(DesignCon)에서 최우수논문상 수상자 4명 동시 배출
반도체 설계 분야에서 세계적으로 권위를 인정받고 있는 국제학술대회인 디자인콘(DesignCon)에서 최우수 논문상 수상자 4명을 우리 대학 한 연구실에서 동시 배출해 화제다. 전체 수상자 8명 중 절반인 4명을 배출한 것도 대단한 성과인데 인텔(Intel)·마이크론(Micron)·AMD·화웨이(Hwawei)와 같이 반도체 강국으로 꼽히는 미국·중국·일본의 글로벌 빅테크 기업 소속 엔지니어 및 연구원들과 당당히 경쟁해서 따낸 것이기에 이들의 수상이 더욱 의미가 크고 값지다는 평가다. 전 세계 기업과 대학 연구실 가운데 최초이면서도 유일하게 인공지능(AI) 스스로 최적의 설계를 구현하는 강화학습(RL)을 포함한 머신러닝(ML) 기술과 3D 이종반도체 패키징(3D Heterogeneous Packaging) 기술을 결합하여 슈퍼 컴퓨터·초대형 데이터센터의 고성능 서버 등에 핵심적으로 사용되는 HBM(고대역폭 메모리) 등 차세대 인공지능(AI) 반도체를 연구하는 전기및전자공학부 김정호 교수 연구실 테라 랩(Terabyte Interconncection and Package Laboratory) 소속 박사과정 학생들의 이야기다. 이들의 연구는 인공지능이 중심이 되는 디지털 전환과 동시에 이를 가능하게 하는 인공지능 반도체와 컴퓨터의 발전을 선도하고 있다. 더 나아가 설계 과정 전체를 인공지능으로 자동화하려는 미래 방향을 제시하고 있다. 전기및전자공학부 테라 랩 소속 김성국(사진·31세)·최성욱(사진·27세)·신태인(사진·26세)·김혜연(사진·26세) 박사과정 학생 4명이 국제학회인 디자인콘(DesignCon)이 선정한 2022년 최우수 논문상 수상자로 선정됐다고 16일 밝혔다. 시상식은 오는 31일 미국 실리콘밸리 산호세 산타클라라 컨벤션센터에서 열리는 `디자인콘 2023 국제학술대회'에서 열린다. 이들 대학원 학생 4명이 수상하는 최우수 논문상은 반도체 및 패키지 설계 분야에서 국제적으로 권위를 인정받고 있는 디자인콘이 인텔·마이크론·램버스·텍사스인스트루먼트(TI)·AMD·화웨이·IBM·앤시스(ANSYS) 등 글로벌 빅테크 기업의 연구원과 엔지니어, 그리고 세계 각 대학 대학(원)생을 대상으로 매년 7월 말 논문 초안을, 12월 말까지 전체 논문을 각각 모집하고 제출받아 심사를 거쳐 수여하는 학술대회 최고상이다. 이 때문에 발표되는 논문은 실무와 매우 밀접한 관련이 있고 곧바로 제품에 적용이 가능한 실용적인 기술에 관한 내용이 대부분이다. 2022년에는 총 8명의 수상자를 선정했는데 김정호 교수가 지도하는 KAIST 테라 랩에서만 수상자의 절반인 4명을 배출했다. 수상작 가운데 2편은 인공지능을 이용한 반도체 설계, 나머지 2편은 인공지능 컴퓨팅을 위한 반도체 구조 설계에 관한 논문이다. 우선 최우수 논문상 수상자 중 김성국 학생(31세)은 고성능 인공지능 가속기를 위한 고대역폭 메모리 기반 프로세싱-인-메모리(PIM) 아키텍처를 설계했다. 최성욱 학생(27세)은 강화학습 방법론을 활용해 고대역폭(HBM) 메모리를 위한 하이브리드 이퀄라이저를 설계해 주목을 받았다. 신태인 학생(26세)은 차세대 뉴로모픽 컴퓨팅 시스템의 신호 무결성 모델링과 설계 및 분석 방법론을 제안했다. 마지막으로 김혜연 학생은 반도체 설계 문제 중 디커플링 캐패시터 배치 문제를 조합 최적화 문제로 정의하고 오프라인 학습 방법인 모방 학습을 통해 자동 최적화했다. 김혜연 학생은 이번 수상 논문 이외에도 반도체 설계 문제에 지식 증류·데이터 증강·대칭성 학습 등 다양한 인공지능 기법을 적용, 한층 성능이 개선된 결과를 얻어 관련 산업계로부터 많은 주목을 받고 있다. 특히 김혜연 학생의 연구는 기존 인공지능을 적용한 연구에서 한 발 더 나가 반도체 설계 문제의 특징을 고려한 학습 방법과 신경 구조를 직접 설계한 연구로 평가받아 2022년 초 열린 인공지능 분야 최대학회인 뉴립스(NeurIPS) 워크숍에서 발표된 적이 있다. 우리 대학 테라 랩은 2022년 4명의 수상자 외에 지난 2021년에도 김민수 박사과정 학생이 최우수 논문상을 수상했다. 불과 2년 사이에 디자인콘이 주관하는 학술대회의 꽃인 최우수 논문상 수상자를 모두 5명을 배출했는데 5편의 수상자 논문 중 3편이 인공지능을 활용한 반도체 설계에 관한 논문이다. 반도체 설계는 고성능·저전력을 목적으로 미세한 3차원 패키지에 다양한 기능을 갖춘 수많은 부품을 최적화해 배치할 뿐만 아니라 검증을 위해서는 복잡한 시뮬레이션이 필요하기 때문에 매우 어려운 분야로 꼽힌다. 김정호 교수가 이끄는 테라 랩에는 올 1월 현재 석사과정 10명, 박사과정 13명 등 모두 23명의 학생이 반도체 전·후공정에 들어가는 다양한 패키지와 인터커넥션 설계를 강화·모방 학습과 같은 인공지능(AI) 머신러닝(ML)을 활용해 최적화하는 연구를 수행 중이다. 김정호 교수는 "테라 랩은 전 세계 산·학·연구기관 중 유일하게 그간의 연구성과를 기반으로 독창적으로 개발한 반도체 설계 자동화 기술인 5I(CI, PI, TI, EMI, AI) 융합 솔루션을 갖추고 있다ˮ면서 "2030년 이후에는 이종 칩(Chip)을 하나의 패키지로 통합하는 `3D 이종 집적화(Heterogeneous Integration) 패키징' 기술이 대세로 자리를 잡을 것ˮ이라고 전망했다. 김 교수는 이어 "디지털 대전환(DX) 시대를 맞아 반도체의 역할이 갈수록 중요해지는 만큼 차세대 반도체 개발에 필요한 맞춤형 인재 양성을 위해 더욱 노력하겠다ˮ고 소감을 밝혔다.
2023.01.16
조회수 1419
심현철 교수팀, CES 2023 자율주행차 레이싱에 아시아 유일팀으로 참가
우리 대학 전기및전자공학부 심현철 교수 팀이 1월 5일부터 8일까지 미국 라스베이거스에서 열리는 세계 최대 전자·정보기술 전시회 CES 2023의 공식행사인 '자율주행 레이싱'에 참가한다. 1월 7일 라스베이거스 모터스피드웨이(LVMS)에서 개최 예정인 'CES 2023 자율주행차 레이싱'은 지난해 개최된 대회에서 개발된 기술력을 더욱 발전시켜 보다 진보된 고속 자율주행 차량 기술 개발성과를 대중에게 공유하고자 추진됐다. 이 대회는 2021년 10월 23일 미국 인디애나폴리스에서 최초로 개최된 '인디 자율주행 챌린지(Indy Autonomous Challenge, IAC)'에 이은 4번째 대회다. IAC 대회에 이어 CES 2022에서 개최된 대회에서 심현철 교수 무인시스템 및 제어 연구팀은 총 9개 팀 중 4강전에 진출해 CES 2023 참가권을 획득했다. 그 결과 아시아 유일 팀으로 CES 2023 자율주행차 레이싱에 출전해 미국·유럽 대학들과 최고 속도를 겨룰 예정이다.CES 2022 대회 참가 당시 심현철 교수 연구팀은 경기 진행 신호와 레이싱 규정을 준수하는 동시에 240km/h의 고속 자율주행이 가능한 소프트웨어를 성공적으로 구현했다. CES 2023 자율주행차 레이싱에서는 인디 레이싱용 IL-15차량을 자율주행차로 개조, 지난번 대회보다 성능이 더 업그레이드된 AV-23 차량을 사용하며 최고 300km/h까지 주행이 가능하다. 이번 대회에서는 CES2022에서 처음 시도된 레이싱 차량 2대 간의 1:1 자율주행 경주에서 보다 발전해 주행코스 제한 없이 자유롭게 다른 차를 추월해야 하며 토너먼트 형식으로 진행돼 가장 높은 속도로 계속 주행하는 팀이 우승을 차지하게 된다. 심 교수 연구팀은 CES 2022에서 검증된 SW를 보다 발전시켜 다른 차량 인식성능을 향상하고 고속으로 안정적으로 주행할 수 있도록 정밀 측위 및 주행 제어기술 개발에 주안점을 두고 있다. 심 교수 연구진은 2021년 현대자동차 주최 자율주행대회에서 우승한 바 있는데, 이번 CES 2023대회부터 현대자동차와 파트너십 계약을 체결하고 대회 참가에 필요한 금전적인 지원을 받고, 현대자동차 연구진과 자율주행 레이싱 기술 동향을 공유하게 된다. CES 2023 기간 중 연구진은 웨스트홀(West Hall)에 위치한 IAC 공식 부스에서 KAIST 레이싱 팀의 기술 소개 등 행사에도 참여할 예정이다. 심현철 교수는 "외국에서 개최되는 대회에 계속 참가하면서 많은 어려움이 있는데 열심히 참여해준 학생들에게 깊이 감사하며, 우리 연구실에서 지난 13년간 개발한 자율주행기술을 검증할 수 있는 고속 자율주행 레이싱 대회에 계속 참여할 수 있어 무척 뜻깊게 생각한다"며, "고속자율주행기술은 우리나라 환경에서 장거리 이동 시 가장 효과적으로 적용할 수 있는 기술이며 고속철도나 도심 항공같이 막대한 인프라 구축 비용이 소요되지 않고 기상 조건의 영향도 크게 받지 않는 등 장점이 매우 크다"고 강조했다.한편, CES 2023 자율주행차 레이싱 대회는 CES 주관사인 미국소비자기술협회(CTA)와 에너지시스템즈네트워크(Energy System Network, ESN)가 공동으로 주최한다. KAIST 외 IAC 대회 우승자인 뮌헨공대, 매사추세츠공대(MIT), 취리히연방공대(ETH), 피츠버그대(PIT), 로체스터공대(RW), 워털루 대학 등이 참가할 예정이다. 인디 자율주행 대회는 2023년 6월 이탈리아 몬짜(Monza) 트랙에서 5회 대회, CES 2024에서 6회 대회를 개최할 예정이다.
2023.01.05
조회수 2608
사진에서 3차원 정보를 추론하는 인공지능 반도체 IP(지식재산권) 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수가 이끄는 PIM 반도체 설계 연구센터(AI-PIM)가 유수 학계에서 인정한 5종의 최첨단 인공지능 반도체 IP(지식재산권)를 개발했다고 29일 밝혔다. 대표적으로 심층신경망 추론 기술 및 센서 퓨전* 기술을 통해 사진으로부터 3차원 공간정보 추출하고 물체를 인식해 처리하는 인공지능(AI) 칩은 KAIST에서 세계 최초로 개발해 SRAM PIM** 시스템에 필요한 기술을 IP(지식재산권)화 한 것이다. * 센서 퓨전 : 카메라, 거리센서 등의 각종 센서로부터 얻은 데이터를 결합하여보다 정확한 데이터를 얻는 방식 ** SRAM PIM : 기존 메모리 SRAM과 DRAM 중 SRAM에 연산기를 결합한 PIM반도체 이 IP는 올해 2월 20일부터 28일까지 개최된 국제고체회로설계학회(ISSCC)에서 현장 시연을 통해 많은 주목을 받았으며, 이를 누구라도 편리하게 활용할 수 있도록 한 것이다. (웹사이트 : www.ai-pim.org) KAIST PIM 반도체 설계연구센터는 해당 IP를 포함해 ADC*, PLL** 등 총 5가지의 PIM IP를 확보했으며, 지난 28일 웹사이트를 오픈해 연구자들이 공유할 수 있는 환경을 제공하고 있다. * ADC(Analog to Digital Converter) : 아날로그 데이터를 디지털 데이터로 변환시키는 회로 ** PLL(Phase-Locked Loop) : 내부 신호의 위상과 외부 신호의 위상을 동기화할 수 있도록 설계된 회로 기존 물체 인식 인공지능 반도체는 사진과 같은 2차원 정보를 인식하는 `사진인식기술'에 불과하다. 하지만 현실 세계의 물체들은 3차원 구조물이기 때문에 3차원 공간정보를 활용해야만 정확한 `물체인식'이 가능하다. 3차원 공간정보는 사진과 같은 2차원 정보에 거리정보를 포함시켜 실제 3차원 공간을 표현한 것으로, 3차원 공간정보에 물체를 식별해 해당 물체의 위치 및 각도를 추적하는 3차원 물체인식 기술이다. 이는 자율주행, 자동화 기술, 개인용 증강현실 (AR)과 가상현실(VR) 등과 같은 3D 어플리케이션에서 사용하는 핵심기술이다. 기존 ToF 센서*를 활용해 센서 뷰 내에 있는 모든 물체에 대한 정밀한 3차원 정보를 추출하는 것은 전력 소모가 매우 크기 때문에 배터리 기반 모바일 장치(스마트폰, 태블릿 등)에서는 사용하기 어렵다. * ToF 센서 : 3차원 공간정보를 추출하는 Time-of-Flight 센서로, 레이저를 방출하고 반사된 레이저가 검출되는 시간을 측정하여 거리를 계산, 대표적인 센서로 3D 라이다 (LiDAR) 센서가 있음 또한, ToF 센서는 특정 측정 환경에서 3차원 정보가 손실되는 문제와 데이터 전처리 과정에 많은 시간이 소요된다는 문제점이 있다. 3차원 물체인식 기술은 데이터가 복잡해 기존 인공지능 2차원 사진인식 가속 프로세서로 처리하기 어렵다. 이는 3차원 포인트 클라우드 데이터를 어떻게 선택하고 그룹화하느냐에 따라 메모리 접근량이 달라진다. 따라서 3차원 포인트 클라우드 기반 인공지능 추론은 연산 능력이 제한적이고 메모리가 작은 모바일 장치에서는 소프트웨어만으로 구현할 수 없었다. 이에 연구팀은 카메라와 저전력 거리센서 (64픽셀)를 사용하여 3차원 공간정보를 생성했고, 모바일에서도 3차원 어플리케이션 구현이 가능한 반도체 (DSPU: Depth Signal Processing Unit)를 개발함으로써 인공지능 반도체의 활용범위를 넓혔다. 모바일 기기에서 저전력 센서를 활용한 3차원 정보 처리 시스템을 구동하면서, 실시간 심층신경망 추론과 센서 퓨전 기술을 가속하기 위해서는 다양한 핵심기술이 필요하다. 인공지능 핵심기술이 적용된 DSPU는 단순 ToF센서에 의존했던 3차원 물체인식 가속기 반도체 대비 63.4% 낮춘 전력 소모와 53.6% 낮춘 지연시간을 달성했다. PIM반도체 설계연구센터(AI-PIM)의 소장인 유회준 교수는 “이번 연구는 저가의 거리센서와 카메라를 융합해 3차원 데이터 처리를 가능하게 한 인공지능 반도체를 IP화했다는 점에서 의미가 크며, 모바일 기기에서 인공지능 활용 영역을 크게 넓혀 다양한 분야에 응용 및 기술이전을 기대하고 있다”고 연구의 의의를 설명했다. 한편, 이번 연구는 과학기술정보통신부와 정보통신기획평가원의 PIM인공지능반도체핵심기술개발사업을 통해 개발되었으며, 이와 관련해 PIM 반도체 관련 기업과 연구기관에 개발된 IP들의 기술이전 및 활용을 돕고 있다.
2022.12.29
조회수 1170
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 21