박테리아로 무지개색 친환경 섬유 만들었다
친환경 섬유 기술이 지속적으로 개발되어 왔지만, 다양한 색상을 가진 섬유를 단일 공정으로 생산하는 기술은 그동안 불가능에 가까웠다. 우리 대학 연구진은 이 한계를 넘어, 박테리아가 스스로 섬유도 만들고 색도 만들어 무지개색 친환경 섬유를 박테리아 공배양(두 가지 이상의 미생물을 같은 환경에서 동시에 배양)으로 세계 최초로 생산하는데 성공했다. 이번 기술은 기존의 석유 기반 염색 공정을 대체할 수 있는 잠재력을 지니며, 대량 생산 가능성까지 확인돼 지속 가능한 섬유 및 착용형 바이오 소재 개발에 폭넓게 활용될 것으로 기대된다.
우리 대학은 19일, 생명화학공학과 이상엽 특훈교수 연구팀이 다양한 색상의 박테리아 셀룰로오스(색이 입혀진 미생물 섬유)를 단일 공정(원스텝)으로 생산하는 모듈형 공배양 플랫폼을 세계 최초로 개발했다고 19일 밝혔다.
박테리아 셀룰로오스는 특정 박테리아(주로 콤마가타이박터 자일리누스, Komagataeibacter xylinus)가 영양분을 소비하며 스스로 합성하는 천연 고분자 섬유다. 높은 순도와 강도, 우수한 보습력을 갖춘 데다 생분해성까지 갖춰 기존의 석유 기반 섬유를 대체할 수 있는 친환경 소재로 주목 받고 있다.
하지만 기본적으로 색이 거의 흰색에 가까워 섬유 산업에서 요구하는 다양한 색상을 구현하기 어렵다는 한계가 있었다. 또한 기존 염색 공정은 석유 유래 염료와 독성 시약에 의존해 환경오염 우려가 크고, 공정 역시 복잡하다는 문제가 지속적으로 제기돼 왔다.
연구팀은 이러한 한계를 해결하기 위해 시스템 대사공학 기반의 색소 생합성 기술과 박테리아 셀룰로오스 생산균의 ‘공배양 전략(한 미생물은 색소를 만들고 다른 미생물은 섬유(셀룰로오스)를 만들면 두 기능이 하나의 공정 안에서 자연스럽게 결합된 전략)을 통합한 ’원스텝 제조 플랫폼(복잡한 여러 단계를 하나의 공정으로 통합해 한 번에 생산하는 기술)‘을 구축했다.
즉 연구팀은 색을 만드는 대장균과 섬유를 만드는 박테리아를 함께 키워, 박테리아가 자라면서 자연스럽게 색이 입혀진 섬유가 한 번에 만들어지도록 하는 새로운 기술을 만든 것이다.
이를 통해 별도의 화학적 염색 없이 적색·주황·황색·녹색·청색·남색·자색 등 전 스펙트럼의 무지개색 섬유를 친환경적으로 생산하는 데 성공했다.
핵심 기술은 색소를 생산하는 대장균 균주를 고도설계해 천연 색소를 과량 생산하고 세포 외부로 효율적으로 분비하도록 한 것이다.
기존에는 대장균이 색소를 너무 많이 만들면 그 색소가 세포 안에 쌓여서 대장균이 스스로 힘들어하는 문제가 있었다. 연구팀은 대장균의 몸(세포막) 구조를 조절해, 대장균이 만든 색소를 밖으로 잘 배출하도록 길을 열어준 것이다. 그 결과, 대장균은 부담 없이 색소를 더 많이, 더 빠르게 만들어 낼 수 있게 됐다.
자연계에서 보라색 색소는 분자 구조가 복잡해 미생물이 스스로 대량으로 합성하기 어렵다. 이 때문에 ‘보라색의 안정적 대량 생산’ 자체가 고도화된 생명공학 기술력을 입증하는 중요한 지표로 평가된다.
보라색을 내는 비올라세인·디옥시비올라세인은 단순 색소가 아니라 항산화, 항염, 항균, 항암 가능성까지 연구되는 기능성 바이오 소재이며 의약·화장품 산업에서도 가치가 높다.
보라색(비올라세인 계열)은 생합성 경로가 복잡해 생산 효율을 높이는 데 기술적 난이도가 매우 높은데 연구팀은 세계 최고 수준(16.92 g/L)*으로 생산했다는 것은 이 플랫폼이 극도로 높은 생산성·기술적 성숙도를 갖고 있음을 보여주는 핵심 근거다.
*디옥시비올라세안(deoxyviolacein) 16.92 ± 0.10 g/L, 비올라세안(violacein) 8.09 ± 0.17 g/L, 프로비올라세안(proviolacein) 1.82 ± 0.07 g/L, 프로디오시비올라세안(prodeoxyviolacein) 936.25 ± 9.70 mg/L
연구팀은 섬유를 만드는 박테리아와 색을 만드는 대장균을 함께 키워서, 박테리아가 자라면서 자연스럽게 다양한 색이 섬유에 입혀지도록 만드는 기술을 만들었다. 여기에 빨강·주황·노랑 색소를 만드는 기존 카로테노이드 생산 균주도 이용하여, 결과적으로 무지개 전 색상의 친환경 섬유를 한 번에, 화학 염색 없이 만들어낼 수 있음을 보여줬다.
이번 기술은 기존 섬유 염색 공정을 대체할 수 있을 만큼 높은 잠재력을 지니고 있으며, 현장 공정에도 적용 가능한 대량 생산 가능성을 제시했다. 연구팀은 이를 통해 지속 가능한 섬유, 착용형 바이오소재 등 다양한 기능성 생체소재 생산에 폭넓게 활용될 수 있을 것으로 기대하고 있다.
이상엽 특훈교수는 “지속 가능한 섬유 및 바이오소재에 대한 수요가 증가하는 가운데, 이번에 개발한 통합 생물제조 플랫폼은 다양한 기능성 소재를 별도의 화학 처리 없이 단일 단계에서 생산할 수 있는 핵심 기술이 될 것”이라고 말했다.
이번 연구 결과는 생명화학공학과 주항서(Zhou Hengrui) 박사과정생이 제 1저자로 참여한 논문으로, ‘Trends in Biotechnology’에 11월 12일 게재됐다.
※ 논문명: One-pot production of colored bacterial cellulose ※ 저자: 이상엽(KAIST, 교신저자), Zhou Hengrui(KAIST, 제1저자), Lin Pingxin(KAIST, 제2저자), 정기준(KAIST, 제3저자) 총 4명 DOI: 10.1016/j.tibtech.2025.09.019
이번 연구는 KAIST 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’의 지원을 받아 수행됐다.
이상엽 특훈교수, 국제공학기술학회(IETI) 최고등급 펠로 선정
우리 대학 생명화학공학과 이상엽 특훈교수가 국제공학기술학회(IETI, International Engineering and Technology Institute)로부터 가장 높은 등급의 펠로우인 ‘로리에이트 디스팅귀시드 펠로(Laureate Distinguished Fellow)’로 선정됐다.
이상엽 교수는 지속가능한 바이오 기반 화학제품 생산 연구를 선도해 온 세계적 생명공학자로, 2018년 ‘에니상(ENI Award)’을 수상한 바 있다. 이번 선정을 통해 그는 노벨상·필즈상·튜링상 수상자 등세계 최고 석학들과 어깨를 나란히 하게 됐다.
IETI는 2015년 홍콩에 설립된 국제 학술단체로, 공학·기술·과학 분야의 혁신과 국제 협력을 촉진하기 위해 설립됐다. 이 학회는 매년 전 세계에서 학문적 영향력이 큰 연구자들을 선발해 로리에이트 디스팅귀시드 펠로(Laureate Distinguished Fellow), 디스팅귀시드 펠로(Distinguished Fellow), 펠로(Fellow) 등 세 등급으로 나누어 임명한다. 이상엽 교수는 이 중에서도 가장 높은 명예 등급에 이름을 올렸다.
2025년에는 총 70명의 신임 펠로가 선정됐으며, 이 중 노벨상·필즈상·튜링상 등 최고 권위의 수상자들이 포함된 로리에이트 디스팅귀시드 펠로에는 이상엽 교수를 비롯해 하버드대 더들리 허쉬바크(노벨화학상), 구글의 빈트 서프(튜링상), 교토대 시게후미 모리(필즈상) 등 14명이 이름을 올렸다.
IETI는 이번 선정 과정에서 지명 → 자격 검토 → 서류 심사 → 전문가 투표 → 최종 평가의 다섯 단계를 거치는 엄격한 절차를 평가했다고 밝혔다. 또한 새롭게 임명된 펠로들이 각자의 연구 분야에서 학문적 리더십을 발휘하고, 세계 과학기술 혁신과 국제 협력 증진에 기여하기를 기대한다고 전했다.
생명화학공학과 최민기 교수, ‘11월 과학기술인상’ 수상
우리 대학 생명화학공학과 최민기 교수가 과학기술정보통신부와 한국연구재단이 공동 주관하는 ‘이달의 과학기술인상’을 수상한다. 이번 시상은 ‘평화와 발전을 위한 세계과학의 날(11월 10일)’을 기념해 진행된다.
이달의 과학기술인상은 최근 3년간 독창적인 연구 성과를 창출해 과학기술 발전에 공헌한 연구개발자를 매달 1명씩 선정해 과기정통부 장관상과 상금 1,000만원을 수여하는 상이다.
최민기 교수는 친환경 암모니아 합성을 위한 고성능 촉매를 개발해 탄소중립과 수소 경제 전환을 위한 핵심 기술을 마련한 공로를 인정받았다.
암모니아는 비료와 의약품 등 필수 산업 원료일 뿐 아니라 액화가 쉽고 수소 저장 밀도가 높아 재생에너지 기반 수소를 저장·운송할 수 있는 차세대 에너지 매개체로 주목받고 있다. 그러나 현재 상용화된 ‘하버-보슈 공정’은 500℃ 이상, 100기압 이상의 고온·고압이 필요해 막대한 에너지를 소모하고 많은 양의 이산화탄소가 배출되는 한계가 있다.
이에 최 교수는 루테늄(Ru) 촉매와 산화바륨(BaO) 조촉매를 전도성이 높은 탄소 지지체 위에 배치해 양전하와 음전하를 분리 저장하는 새로운 형태의 ‘화학 축전지형 촉매’를 개발했다. 이 촉매는 기존 최고 수준의 촉매 대비 7배 이상 높은 암모니아 합성 성능을 보이며 300℃·10기압의 온건한 조건에서 안정적으로 작동해 상용화 가능성을 입증했다.
최 교수는 “이번 연구는 촉매 반응의 새로운 이론적 틀을 제시했다는 점에서 학문적 의미가 크다”며, “앞으로 친환경 암모니아 합성 기술의 실용화를 통해 식량·에너지·환경 문제 해결에 기여하고 싶다”고 소감을 전했다.
해당 연구는 과기정통부 개인기초연구사업의 지원을 받았으며 지난 2월 국제학술지 네이처 카탈리시스(Nature Catalysis)에 게재됐다. 또한 최 교수는 ACS Catalysis 편집위원으로도 활동하며, 촉매 분야의 학문적 발전에 기여하고 있다.
미생물로 석유화학산업 핵심 원료 만든다
페트병, 스티로폼, 나일론 등 일상 곳곳에 쓰이는 BTEX(벤젠·톨루엔·에틸벤젠·파라자일렌)은 핵심 원료지만, 지금까지는 석유 정제를 통해서만 얻을 수 있었다. 식물 기반 생산 시도는 오랫동안 난제로 남아 있었다. 그러나 KAIST 연구팀이 마침내 석유 대신 폐목재 등 바이오매스 유래의 포도당으로부터 BTEX를 생산하는 데 성공, 차세대 친환경 플라스틱 원료로 가는 길을 열었다.
우리 대학은 생명화학공학과 이상엽 특훈교수 및 화학과 한순규 교수 공동 연구팀이 미생물 발효 공정과 유기화학 반응을 결합하여 포도당, 글리세롤과 같은 재생 가능한 바이오 원료에서 벤젠, 톨루엔, 에틸벤젠, 파라자일렌 등(BTEX)을 생산하는 공정을 개발하였다고 12일 밝혔다.
우리 대학 연구팀은 석유 정제로 인한 환경 부담과, 복잡한 화학 구조 때문에 식물 기반 BTEX 생산이 어려웠던 문제를 미생물 세포공장과 화학 반응을 융합한 새로운 공정으로 해결했다.
미생물이 포도당, 글리세롤을 이용해 페놀, 벤질알코올 등 산소화된 중간 물질을 만들고, 이를 화학 반응으로 산소를 제거하여 벤젠·톨루엔 같은 BTEX을 얻는 방식이다.
특히 이상엽 교수가 이끌어온 ‘시스템 대사공학 기술’로 미생물의 대사 경로를 새로 설계해 효율을 높였다. 여기에 연구팀은 비밀 병기인 ‘아이소프로필 마이리스테이트(IPM)’라는 특별한 용매를 사용했다.
이 용매는 복잡한 정제 과정 없이 바로 반응 가능하며 끓는점이 높아 BTEX와 쉽게 분리·재활용 가능하다. 덕분에 공정은 단순해지고 효율은 크게 올랐다.
이번에 구축한 플랫폼은 미생물 대사의 선택성과 화학 반응의 효율성을 결합해 BTEX의 재생 가능한 생산 경로를 마련했다는 점에서 의의가 크며, 앞으로는 미생물이 원료를 더 효율적으로 활용하도록 설계하고, 공정을 산업 규모로 확대하며, 친환경 촉매를 도입해 기술을 한 단계 더 발전시킬 수 있을 것으로 기대된다.
녹색성장지속가능대학원 최경록 교수는 “이번 연구는 단순한 BTEX 생산을 넘어, 미생물과 화학 반응을 한 과정에서 통합할 수 있는 새로운 체계를 제시했다”며, “특히 끓는점이 높은 IPM 덕분에 BTEX를 쉽게 분리하고 재활용할 수 있어 석유화학의 지속 가능한 대안이 될 수 있다”고 강조했다.
공동 교신저자인 한순규 교수는 “이번 성과는 잘 쓰이지 않던 용매(IPM) 안에서 미생물 대사공학과 화학 반응이 동시에 잘 작동하도록 한 것이 핵심”이라며, “이로써 기존 촉매와 시약의 한계를 극복할 수 있었다”고 설명했다.
이상엽 특훈교수는 “BTEX 수요는 세계적으로 계속 증가하고 있다”며, “이번 성과는 석유 의존도를 낮추고, 연료·화학 산업의 탄소 발자국을 줄이며, 지속 가능한 원료 공급을 가능하게 하는 중요한 진전”이라고 평가했다.
이번 논문은 미국국립과학원(NAS)이 발행하는 ‘미국국립과학원회보(PNAS)’에 10월 2일에 게재됐다.
※ 논문명 : Chemobiological synthesis of benzene, toluene, ethylbenzene, and xylene from glucose or glycerol, DOI:10.1073/pnas.2509568122
※ 저자 정보 : Zou Xuan(KAIST, 제1 저자), 김태완(KAIST, 제2 저자), Luo Zi Wei(KAIST, 제 3저자), 최경록(KAIST, 제4 저자), 한순규(KAIST, 공동교신저자) 및 이상엽(KAIST, 교신저자) 포함 총 6명
한편, 이번 연구는 과학기술정보통신부가 지원하는 ‘차세대 바이오리파이너리를 위한 세포공장 구축 원천기술 개발’ 및 ‘바이오제조 산업 선도를 위한 첨단 합성생물학 원천기술 개발’ 사업의 지원을 받아 수행됐다.
세계 최초 양자컴퓨팅으로 레고처럼 다공성 물질 설계
다성분 다공성 물질(Multivariate Porous Materials, MTV)은 일종의 ‘레고 블록 집합’과 같이 분자 수준에서 맞춤형 설계가 가능한 소재로, 원하는 구조를 자유롭게 구현할 수 있다. 이를 활용하면 에너지 저장·변환을 비롯해 다양한 응용이 가능해 환경 문제 해결과 차세대 에너지 기술 발전에 크게 기여할 수 있다. 우리 연구진은 여기에 양자컴퓨팅을 세계 최초로 도입해 복잡한 MTV 설계의 난제를 해결했으며, 이를 통해 차세대 촉매·분리막·에너지 저장 소재 개발의 혁신적 길을 열었다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 양자컴퓨터를 활용해 수백만 가지 다성분 다공성 물질(이하 MTV)의 설계 공간을 효율적으로 탐색할 수 있는 새로운 프레임워크를 개발했다고 9일 밝혔다.
MTV 다공성 물질은 두 종류 이상의 유기 리간드(링커)와 금속 클러스터와 같은 빌딩 블록 물질 간의 결합을 통해 형성되는 구조로 에너지 및 환경 분야에서 큰 활용 가능성을 갖고 있다. 이는 다양한 구성 조합을 통해 새로운 구조를 설계 및 합성이 가능하고, 대표적으로는 가스 흡착, 혼합가스 분리, 센서, 촉매 등이 있다.
하지만, 구성 성분이 다양해질수록 가능한 조합의 수가 기하급수적으로 늘어나, 기존 방식인 고전 컴퓨터를 이용해 모든 구조를 하나하나 확인하는 방식으로는 복잡한 링커 조합의 MTV 구조의 설계 및 물성 예측이 불가능했다.
연구팀은 복잡한 다공성 구조를 ‘지도 위에 그려진 연결망(그래프)’처럼 표현한 뒤, 각 연결 지점과 블록 종류를 양자컴퓨터가 다룰 수 있는 큐비트로 바꿔 넣었다. 그리고 ‘어떤 블록을 어느 비율로 배치하면 가장 안정적인 구조가 될까?’라는 문제를 양자컴퓨터에게 풀도록 했다.
양자컴퓨터는 동시에 여러 가지 경우를 겹쳐서 계산할 수 있기 때문에, 마치 수백만 가지 레고 집을 한 번에 펼쳐놓고, 그중 가장 튼튼한 집을 빠르게 골라내는 것과 같은 효과를 냈다. 이 덕분에 기존 컴퓨터가 하나씩 다 계산해야 했던 막대한 경우의 수를 훨씬 적은 자원으로 탐색할 수 있다.
또한 연구팀은 실제 보고된 MTV 구조 4가지를 대상으로 실험했는데, 시뮬레이션 뿐만 아니라 IBM 양자컴퓨터에서도 동일한 결과가 나와 ‘실제로도 잘 작동한다”는 가능성을 보여줬다.
앞으로는 이 방법을 머신러닝과 결합해 단순한 구조 설계뿐 아니라 합성 가능성, 가스 흡착 성능, 전기화학적 특성까지 한 번에 고려하는 플랫폼으로 확장할 계획이다.
김지한 교수는 “이번 연구는 복잡한 다성분 다공성 소재 설계의 병목을 양자컴퓨팅으로 해결한 첫 사례”라며, “이번 성과는 탄소 포집·분리, 선택적 촉매 반응, 이온전도성 전해질 등 정밀 조성이 핵심인 분야에서 맞춤형 소재 설계 기술로 폭넓게 응용될 전망이며, 향후 더 복잡한 시스템에도 유연하게 확장될 수 있을 것”이라고 말했다.
이번 연구는 생명화학공학과 강신영·김영훈 박사과정이 공동 제1 저자로 참여했으며, 연구 결과는 국제 학술지 미국 화학회지(ACS Central Science) 8월 22일자 온라인판에 게재됐다.
※ 논문명: Quantum Computing Based Design of Multivariate Porous Materials
※ DOI https://doi.org/10.1021/acscentsci.5c00918
한편 이번 연구는 과학기술정보통신부 중견연구자지원사업과 이종소재지원사업의 지원을 받아 수행됐다.
리튬메탈전지로 12분 충전·800km 주행 실현
우리 연구진이 리튬메탈전지의 난제였던 덴드라이트 문제를 해결하며 전기차 배터리 기술의 새 시대를 열었다. 기존 리튬이온전지가 최대 600km 주행에 머물렀다면, 새 전지는 1회 충전 800km, 누적 30만 km 이상 수명, 12분 초고속 충전을 가능하게 했다.
우리 대학 생명화학공학과 김희탁 교수와 LG에너지솔루션이 공동으로 진행하고 있는 프론티어 연구소(Frontier Research Laboratory, 이하 FRL) 연구팀이 ‘리튬메탈전지(Lithium metal battery)’의 성능을 획기적으로 늘릴 수 있는 ‘응집 억제형 신규 액체 전해액’ 원천기술을 개발했다고 4일 밝혔다.
리튬메탈전지는 리튬이온 전지(Lithium-ion battery)의 핵심 재료 중 하나인 흑연 음극을 리튬메탈(Lithium metal)로 대체하는 것으로, 리튬메탈은 여전히 전지의 수명과 안정성 확보를 어렵게 하는‘덴드라이트(Dendrite)’라는 기술적 난제가 있다. 덴드라이트는 배터리 충전 시 음극 표면에 형성되는 나뭇가지 모양의 리튬 결정체로 배터리 성능과 안정성에 악영향을 미친다.
이 덴드라이트 현상은 급속 충전 시 더욱 심각하게 발생하며 전지의 내부 단락(short-circuit)을 유발하기 때문에, 아직 급속 충전 조건에서 재충전할 수 있는 리튬메탈전지의 기술은 구현이 매우 어려웠다.
FRL 공동연구팀은 리튬메탈이 급속 충전 시 덴드라이트 형성의 근본적 원인이 리튬메탈 표면에서 불균일한 계면 응집반응 때문임을 규명하고, 이 문제를 해결할 수 있는 ‘응집 억제형 신규 액체 전해액’을 개발했다.
신규 액체 전해액은 리튬 이온(Li⁺)과의 결합력이 약한 음이온 구조를 활용해 리튬 계면 상의 불균일성을 최소화하며, 급속 충전 시에도 덴드라이트 성장을 효과적으로 억제하는 특징이 있다.
이 기술은 높은 에너지밀도(Energy Density)를 유지하면서도, 기존의 리튬메탈전지에서 한계로 지적되던 느린 충전 속도를 극복해, 긴 주행거리를 확보하면서도 빠른 충전에서도 안정적인 작동이 가능하다는 특징이 있다.
LG에너지솔루션의 CTO 김제영 전무는 “LG에너지솔루션과 KAIST가 FRL을 통해 이어온 지난 4년간의 협력이 유의미한 성과를 창출하고 있다”며 “앞으로도 산학 협력을 더욱 강화해 기술적인 난제를 해결하고 차세대 배터리의 분야에서도 최고의 성과를 창출해 나가겠다”고 말했다.
생명화학공학과 김희탁 교수는 “이번 연구는 계면 구조에 대한 이해를 통해 리튬메탈전지의 기술적 난제를 돌파하는 핵심 토대가 됐고 리튬메탈전지가 전기차에 도입되기 위한 가장 큰 장벽을 넘어섰다”라고 평가했다.
이번 연구는 KAIST 생명화학공학과 권혁진 박사가 제1 저자로 세계적인 학술지 ‘네이처 에너지(Nature Energy)’에 9월 3일 자 게재됐다.
※ 네이처 에너지(Nature Energy) : 2024년 Clarivate Analytics가 발표한 Journal impact factor에서 에너지 분야 182개 학술지 중 1위, 총 2만 1천여 개 학술지 중 23위를 기록
※ 논문명 : Covariance of interphasic properties and fast chargeability of energy-dense lithium metal batteries
※ DOI: 10.1038/s41560-025-01838-1
한편, 이번 연구는 KAIST와 LG에너지솔루션이 차세대 리튬메탈전지 기술 개발을 위해 2021년 설립한 프론티어 연구소(Frontier Research Laboratory, FRL, 연구소장 김희탁 교수)를 통해 이뤄졌다.
전기 스위치처럼 몸속 세포 신호 쉽게 켜고 끈다
우리 몸속 세포들은 신경, 면역, 혈관 기능을 조절하기 위해 다양한 신호 분자(signaling molecules)를 주고받는다. 그중 일산화질소(NO)와 암모니아(NH₃)는 특히 중요한 역할을 하지만, 이들은 불안정하거나 기체 상태로 존재해 외부에서 생성하거나 조절하기가 매우 어려웠다. 우리 연구진이 전기 자극 하나만으로 세포 안팎에서 원하는 신호 물질을 생성하고, 이를 통해 세포 반응을 마치 전기 스위치처럼 켜고 끌 수 있는 플랫폼을 개발했다. 향후 전자약, 전기유전학, 맞춤형 세포 치료 등 미래형 의료 기술의 핵심 기반으로 활용될 수 있을 것으로 기대된다.
우리 대학 생명화학공학과 박지민 교수 연구팀이 생명화학공학과 김지한 교수팀과의 공동연구를 통해, 전기 신호만으로 일산화질소와 암모니아 신호 물질을 원하는 순간에 생성할 수 있고 세포의 반응 시점·범위·지속 시간까지 조절할 수 있는 고정밀 생체 제어 플랫폼인 ‘바이오전기합성(Bioelectrosynthesis) 플랫폼’을 개발했다고 11일 밝혔다.
연구팀은 몸속 질산염(Nitrite, NO2-) 환원효소가 작동하는 것에 아이디어를 얻어, 하나의 물질(질산염, Nitrite, NO2-)로부터 생체 신호 물질인 일산화질소와 암모니아를 선택적으로 생성할 수 있는 전기 기반 기술을 구현하는데 성공했다.
연구팀은 촉매에 따라 만들어지는 신호 물질이 달라지는 점을 기반으로, 질산염을 단일 전구체로 사용하여 구리-몰리브덴-황 기반 기본 촉매(Cu2MoS4)와 철이 들어간 촉매(FeCuMoS4)를 활용하여 암모니아와 일산화질소 신호 물질을 각각 선택적으로 합성하는데 성공했다.
연구팀은 전기화학 실험과 컴퓨터 시뮬레이션을 통해,‘철’이 일산화질소와 강하게 결합해 철이 있는 촉매를 쓰면 일산화질소가 더 잘 만들어지고, 철이 없는 촉매를 쓰면 암모니아가 더 잘 만들어지는 식으로 생성 비율을 제어한다는 사실을 규명했다. 즉, 촉매만 교체하면 전기 신호만으로 일산화질소 또는 암모니아 신호 물질을 자유롭게 생성할 수 있음을 입증했다.
연구팀은 이 플랫폼을 이용해 인간 세포에 발현시킨 TRPV1(통증·온도 자극을 느끼게 하는 센서)와 OTOP1(산·암모니아 등 pH 변화를 감지하는 센서) 같은 이온 채널들을 전기 신호로 작동시키는데도 성공했다.
또한, 전압의 세기와 작동 시간을 조절함으로써 세포 반응의 시작 시점, 반응 범위, 종료 시점을 자유롭게 조절할 수 있음도 실험적으로 입증했다. 말 그대로 마치 전기 스위치를 켜고 끄듯이 세포 신호를 조절하는 기술이 가능해진 것이다.
박지민 교수는 “이번 연구는 전기로 다양한 신호 물질을 선택적으로 생산해 세포를 정밀하게 조절할 수 있다는 점에서 큰 의미가 있다”며, “신경계나 대사질환을 대상으로 한 전자약 기술로의 확장 가능성도 크다”고 밝혔다.
생명화학공학과 이명은, 이재웅 박사과정 연구원이 제1 저자로, 김지한 교수가 공저자로 참여했고 연구 결과는 화학 및 화학공학 분야 최고 권위지 중 하나인‘앙게반테 케미(Angewandte Chemie International Edition)’에 지난 7월 8일 게재(온라인 공개는 8월 4일) 됐다.
※ 논문명 (1): Bioelectrosynthesis of Signaling Molecules for Selective Modulation of Cell Signaling (저자 정보 : 박지민(KAIST, 교신저자), 이명은(KAIST, 제1 저자), 이재웅(KAIST, 공동 제1 저자), 김지한 (KAIST, 공저자) 포함 총 7명)
※ DOI: https://doi.org/10.1002/ange.202508192
이번 연구는 한국연구재단의 지원으로 수행됐다.
3분 만에 질병 현장 진단..효소모방촉매 반응 38배 향상
급성 질병의 조기 진단과 만성 질환의 효율적 관리를 위해, 환자 가까이에서 신속하게 진단할 수 있는‘현장진단(Point-of-Care, POCT)’기술이 전 세계적으로 주목받고 있다. POCT 기술의 핵심은 특정 물질을 정확히 인식하고 반응하는‘효소’에 있다. 그러나 기존의 ‘자연효소’는 고비용·불안정성의 한계를 지니며, 이를 대체하는 ‘효소 모방 촉매(nanozyme)’ 역시 낮은 반응 선택도라는 문제를 안고 있다. 최근 국내 연구진은 기존 효소모방촉매보다 38배 이상 향상된 선택도를 구현하고, 단 3분 만에 육안으로 진단 결과를 확인할 수 있는 고감도 센서 플랫폼을 개발하는 데 성공했다.
우리 대학 생명화학공학과 이진우 교수 연구팀이 서울대학교 한정우 교수, 가천대학교 김문일 교수 연구팀과의 공동연구를 통해, 과산화효소 반응만을 선택적으로 수행하면서도 높은 반응 효율을 유지하는 새로운 단일원자 촉매를 개발했다고 28일 밝혔다.
혈액, 소변, 타액 등 인체 유래 체액을 이용해 병원 밖에서도 수 분 내 판독할 수 있는 진단 플랫폼으로 의료 접근성을 크게 높이고, 치료의 시의성을 확보할 수 있는 현장진단 기술의 핵심은 효소를 이용해 질병 진단 물질인 바이오마커를 색 변화를 통해 시각적으로 알아낼수 있다는 점이다. 그러나 자연 효소를 이용할 경우 가격이 높고 진단 환경에서 쉽게 불안정해져 보관 및 유통의 한계가 있다.
이 문제를 해결하기 위해 새로운 무기 소재 ‘효소 모방 촉매(nanozyme)’가 개발되어 왔으나 반응의 선택도가 낮다는 한계를 안고 있다. 과산화수소를 기질로 활용할 경우, 하나의 촉매가 동시에 과산화효소(색 변화 유도) 반응과 카탈레이스(반응 기질 제거) 반응을 함께 일으켜 진단 신호의 정확도가 낮아지는 문제가 있다.
연구팀은 촉매의 반응 선택성을 원자 수준에서 제어하기 위해, 촉매 중심 금속인 ‘루테늄(Ru)’에 금속과 결합해 화학적 성질을 조절하는 ‘염소(Cl) 리간드’를 3차원 방향으로 결합하는 ‘독창적 구조 설계 전략’을 활용하여 정확한 진단 신호만을 검출하는데 성공했다.
실험 결과, 이번에 개발한 촉매는 기존 효소 모방 촉매 대비 38배 이상 향상됐으며, 과산화수소 농도에 따른 반응 민감도와 속도 또한 눈에 띄게 증가했다. 특히 생체 체액의 조건에 가까운 환경(pH 6.0)에서도 반응 선택성과 활성을 안정적으로 유지해, 실제 진단 환경에서의 적용 가능성도 입증했다.
연구팀은 개발한 촉매에 산화효소를 담아 종이 센서에 적용함으로써 산화효소-효소모방촉매 연계 반응을 통해, 우리 몸의 건강상태를 알려주는 바이오마커에 해당하는 ‘포도당, 젖산(락테이트), 콜레스테롤, 콜린’ 등 4종의 바이오마커를 동시에 검출할 수 있는 진단 시스템을 구현했다.
다양한 질병 진단에 범용 적용이 가능한 이 플랫폼은 별도의 pH 조절이나 복잡한 장비 없이도 3분 이내에 색 변화를 통해 육안으로 결과를 판별할 수 있으며, 이 성과는 플랫폼 자체의 변경 없이, 촉매 구조 제어만으로도 진단 성능을 획기적으로 개선할 수 있음을 보여준 사례다.
이진우 교수는 “이번 연구는 단일원자 촉매의 반응 선택성을 원자 구조 설계를 통해 제어함으로써, 효소 수준의 선택성과 반응성을 동시에 구현한 사례로 의의가 있다”고 밝혔다. 또한 “이러한 구조–기능 관계 기반의 촉매 설계 전략은 향후 다양한 금속 기반 촉매 개발에도 적용할 수 있으며, 선택성 제어가 중요한 다양한 반응 영역으로 확장될 수 있다”고 강조했다.
우리 대학 생명화학공학과 박사과정 박선혜 학생과 최대은 학생이 공동 제1 저자로 연구 결과는 재료과학 분야의 권위 있는 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에 2025년 7월 6일 게재됐다.
※ 논문명: Breaking the Selectivity Barrier of Single-Atom Nanozymes Through Out-of-Plane Ligand Coordination
(저자 정보 : 박선혜(KAIST, 제1 저자), 최대은(KAIST, 제1 저자), 심규인(서울대, 제1 저자), Phuong Thy Nguyen(가천대, 제1 저자), 김성빈(KAIST), 이승엽(KAIST), 김문일(가천대, 교신저자), 한정우(서울대, 교신저자), 이진우(KAIST, 교신저자) 총 9명)
※DOI: https://doi.org/10.1002/adma.202506480
한편, 이번 연구는 과학기술정보통신부와 한국연구재단의 지원을 받아 수행됐다.
미생물 안전균주로 고효율 루테인 대량 생산 가능
노안 및 백내장 예방에 효과가 있는 대표적인 눈 건강 기능성 성분 ‘루테인’을 우리 연구진이 2022년 전자 채널링 기술을 적용한 대장균을 통해 세계 최초로 생산하는 데 성공한 바 있다. 이후 연구진은 기존 기술이 가진 대장균의 내독소(endotoxin) 문제를 해결하고, 동시에 대량 생산이 가능한 미생물 대사공학 기반의 친환경적이고 고효율적인 루테인 생산 플랫폼을 새롭게 개발하여 실용성과 안전성 모두를 획기적으로 향상시키는데 성공했다. 향후, (주)실리코바이오(이상엽 특훈교수 교원창업기업)을 통해 기술사업화를 추진할 예정이다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `루테인을 대량 생산하는 미생물 균주 개발'에 성공했다고 13일 밝혔다.
기존의 미생물 대사공학을 이용한 루테인 생산 연구에서는 부산물 생성이 많고 루테인 축적량이 제한되는 한계가 있었다. 이는 루테인 합성 대사경로에서 특정 병목 단계가 존재하여 대사 흐름이 원활하게 진행되지 못했기 때문으로 분석되었다.
이번 연구에서는 루테인 생산 경로에서 주요 병목으로 작용하는 대사반응을 개선하기 위해 전자 채널링(electron channeling) 전략*을 도입하였다.
*전자 채널링: 생체 내 또는 인공 생합성 시스템에서 특정 효소 반응을 보다 빠르고 효율적으로 일어나게 하기 위해, 전자가 효율적으로 이동하도록 경로를 제어하는 기술
루테인을 만드는데 필요한 효소들을 최적화된 단백질 구조(스캐폴드) 시스템에 가깝게 배열함으로써 효소 주변 재료(기질)과 전자의 농도를 높여 루테인 합성 대사 흐름을 효과적으로 증대시켰다.
또한 연구팀은 설탕처럼 흔한 포도당을 활용하여 고효율로 루테인을 생산할 수 있는 미생물 플랫폼을 구축하였으며, 이는 바이오매스의 주 원료인 포도당으로부터 친환경적인 바이오 기반 루테인 생산 가능성을 제시하는 중요한 성과로 평가된다.
결론적으로 연구팀은 시스템 대사공학 기술과 단백질 간 입체적 거리 제어를 포함한 효소 재배열 전략을 병행하여 해당 균주를 이용해 54시간 만에 1.78 g/L의 루테인을 생산하는 데 성공했다. 이는 시간당 32.88 mg/L의 생산성에 해당하며, 기존 식물이나 미세조류에서 루테인을 추출하는 기존 방식보다 훨씬 빠르고 효율적인 생산방법으로 산업적으로 큰 의미를 가진다.
이번 연구에서 산업적 활용도가 높고 안전균주 (Generally Recognized As Safe; GRAS)로 분류되는 ‘코리네박테리움 글루타미쿰(Corynebacterium glutamicum)’을 새로운 생산 호스트로 활용했다. 이 균주를 기반으로 루테인 생합성 경로를 최적화하고, 전자전달 병목을 해결하기 위해 막결합형 P450 효소의 개량, 그리고 전자 채널링 스캐폴드 시스템을 도입하여 생산성을 획기적으로 향상시켰다.
연구를 주도한 은현민 박사과정생은 “이번 연구는 미생물 기반 루테인 생산의 병목을 해소하고 산업적으로 경쟁력 있는 친환경 공정을 확립한 사례”라며, “향후 루테인을 포함한 다양한 천연물 생산 기술의 실용화를 앞당길 수 있을 것으로 기대된다”고 말했다.
이상엽 특훈교수는 “미생물을 활용한 대사공학 기술은 기존의 식물 기반 및 화학합성 방식을 뛰어넘는 차세대 전략으로 부상하고 있다”며, “앞으로도 고부가가치 천연물의 효율적 생산을 위한 연구를 지속하겠다”고 밝혔다.
이번 연구 결과는 생명화학공학과 은현민 박사과정생과 신디 박사가 공동 제 1저자로 국제 학술지 `네이처 신시시스(Nature Synthesis)'에 7월 4일자로 게재되었다.
※ 논문명: Gram-per-litre scale production of lutein by engineered Corynebacterium
※ 저자: 이상엽(KAIST 교신저자), 은현민 (KAIST 제1저자), Cindy Pricilia Surya Prabowo (KAIST 공동 제1저자) 포함 총 3명
※ DOI: https://doi.org/10.1038/s44160-025-00826-3
이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’의 지원을 받아 수행됐다.
항암제 내성 없앤다! 당뇨병 등 난치성 질환 치료도 기대
암 치료의 큰 걸림돌 중 하나는 항암제에 대한 암세포의 내성이다. 기존에는 내성 암세포를 제거할 수 있는 새로운 표적을 찾는 방식이 주를 이뤘지만, 오히려 더 강한 내성을 유도할 수 있다는 한계가 있었다. 이에 우리 연구진이 내성 암세포를 다시 약물에 반응하게 만들 수 있는 핵심 유전자를 자동으로 예측하는 컴퓨터 기반 방법론을 개발했다. 이 기술은 다양한 암 치료뿐 아니라 당뇨병 등 난치성 대사 질환에도 활용될 수 있어 주목된다.
우리 대학 생명화학공학과 김현욱 교수와 김유식 교수 연구팀이 인체 대사를 시뮬레이션할 수 있는 컴퓨터 모델인 대사 네트워크 모델을 활용해, 항암제에 내성을 가진 유방암 세포를 약물에 민감화시킬 수 있는 새로운 약물 표적을 예측하는 컴퓨터 기반 방법론을 개발했다고 7일 밝혔다.
연구진은 암세포의 대사 변형이 약물 내성 형성에 관여하는 주요한 특징으로 주목하고, 항암제 내성 유방암 세포의 대사를 조절해 약물 반응성을 높일 유전자 표적을 예측하는 대사 네트워크 모델 기반 방법론을 개발했다.
연구진은 먼저 독소루비신(doxorubicin)과 파클리탁셀(paclitaxel)에 각각 내성을 지닌 MCF7 유방암 세포주에서 얻은 단백체 데이터를 통합해 세포별 대사 네트워크 모델을 구축했다. 이어 모든 대사 유전자에 대해서 유전자 낙아웃(결실) 시뮬레이션*을 수행하고, 그 결과를 분석했다.
*유전자 낙아웃 시뮬레이션: 특정 유전자를 가상으로 제거한 상태에서 생물학적 네트워크의 변화를 계산적으로 예측하는 방법
그 결과, 특정 유전자의 단백질을 억제하면, 항암제에 잘 듣지 않던 내성 암세포가 다시 항암제에 반응하도록 만들 수 있다는 것을 알아냈다. 독소루비신 내성 세포에서는 GOT1 유전자를, 파클리탁셀 내성 세포에서는 GPI 유전자를 선별했으며, 두 약물 공통으로는 SLC1A5 유전자를 표적으로 선별했다.
예측하여 선별한 유전자를 실제로 억제해 본 결과, 내성 암세포가 항암제에 다시 반응하게 됨을 실험적으로 검증했다.
나아가 같은 항암제에 내성을 갖는 다른 종류의 유방암 세포에서도 같은 유전자를 억제했을 때 항암제에 다시 민감해지는 효과가 일관되게 나타나는 것을 확인할 수 있었다.
김유식 교수는 “세포 대사는 감염병, 퇴행성 질환 등 다양한 난치성 질환에서 중요한 역할을 한다”며, “이번에 개발된 대사 조절 스위치 예측 기술은 약물 내성 유방암 치료를 넘어, 치료제가 없는 다양한 대사 질환에도 적용될 수 있는 기반 기술이 될 것”이라고 말했다.
연구를 총괄한 김현욱 교수는 “이번 연구의 가장 큰 의의는 컴퓨터 시뮬레이션만과 최소한의 실험 데이터만으로 내성 암세포를 다시 약물에 반응하게 만들 수 있는 핵심 유전자를 정밀하게 예측할 수 있다는 점”이라며, “이 방법론은 다양한 암종과 대사 관련 난치성 질환의 새로운 치료 표적 발굴에도 폭넓게 활용될 수 있을 것”이라고 강조했다.
우리 대학 생명화학공학과 임진아 박사과정생과 정해덕 박사과정생이 공동 제1 저자로 참여한 이번 연구는 생명과학·물리·공학·사회과학 등 다양한 분야의 최고 수준 연구를 다루는 다학제 국제 학술지인 미국국립과학원회보(PNAS) 6월 25일 자 온라인에 게재됐다.
※ 논문명 : Genome-scale knockout simulation and clustering analysis of drug-resistant breast cancer cells reveal drug sensitization targets
※ 저자 정보 : 임진아(한국과학기술원, 공동 제1 저자), 정해덕(한국과학기술원, 공동 제1 저자), 유한석(서울대학교병원, 교신저자), 김유식(한국과학기술원, 교신저자), 김현욱(한국과학기술원, 교신저자) 포함 총 10명
※ DOI: https://doi.org/10.1073/pnas.2425384122
이번 연구는 과학기술정보통신부 한국전자통신연구원 및 한국연구재단의 지원을 받아 수행됐다.
이상엽 특훈교수, 2025 세계적 대사공학상 수상
우리 대학 연구부총장이자 특훈교수인 이상엽 교수가 국제대사공학회(IMES, International Metabolic Engineering Society)의 ‘2025 그레고리 N. 스테파노폴로스 대사공학상’을 수상했다고 20일 밝혔다. 이 교수는 6월 15일부터 19일까지 덴마크 코펜하겐에서 개최되는 제16회 대사공학학회(ME16)에서 수상 기념 강연을 진행했다.
이 상은 대사공학의 창시자 중 한 명으로 널리 알려진 그레고리 스테파노폴로스 박사의 업적을 기리기 위해 미국화학공학회(AIChE, American Institute of Chemical Engineers) 재단과 동료 및 지인들의 기부로 제정됐으며, 대사공학 분야의 기초연구를 성공적으로 사업화하거나, 대사 경로의 정량적 분석 및 설계, 모델링에 탁월한 공헌을 한 과학자에게 2년마다 수여된다.
이상엽 교수는 770편 이상의 저널 논문과 860건 이상의 특허를 보유하고 있으며, 그의 대사공학 및 생명화학공학 분야에서의 선도적인 연구는 전 세계적으로 높은 평가를 받고 있다.
이 교수는 31년간 KAIST 교수로 재직하면서, 대사공학 기반의 다양한 기술과 전략을 개발했고, 이를 활용해 벌크 화학물질, 고분자, 천연물, 의약품, 건강기능식품 등을 생산하는 기술들을 산업체에 기술 이전했다. 직접 창업도 했고, 다양한 기업들과의 자문 활동도 활발히 진행 중이다.
국제대사공학회(IMES)에서는 대사공학에 대해 미생물이나 세포의 대사경로를 조작해 유용한 물질(의약품, 바이오연료, 화학제품 등)을 생산하고, 시스템 생물학, 합성생물학, 컴퓨터 모델링 등의 도구를 활용하며 생물 기반 공정의 경제성 및 지속가능성 향상을 목표로 하고 있다.
또한, 이 교수는 2008년도에 대사공학 분야 국제적 대표 상인 머크 대사공학상(Merck Metabolic Engineering Award), 2018년에는 에너지 분야 노벨상으로 불리우는 에니상(Eni Award)를 이태리 대통령으로부터 수상한 바 있다.
이상엽 교수는 “대사공학은 현재와 미래의 생명공학을 선도하는 학문이다. 바이오 기반 경제로의 전환이 가속화되고 있는 시점에 이 뜻깊은 상을 받게 되어 매우 영광이다. 학생들과 동료 연구자들과 함께 수많은 특허를 창출하고 산업계로 기술을 이전하였으며, 바이오연료 및 상처 치유, 화장품 분야의 창업도 이뤄졌다. 앞으로도 기초연구와 기술 상용화를 모두 아우르는 연구를 지속해 나가겠다”라고 소감을 밝혔다.
한편, ‘국제대사공학회(IMES)’는 미국화학공학회 산하의 전문 학회로 대사공학을 통해 의약품, 식품첨가물, 화학물질, 연료 등 다양한 바이오 기반 제품의 생산을 가능하게 하는 것을 목표로 하는 학회로, 2년마다 열리는 대사공학학회(Metabolic Engineering Conference)를 통해 연구자들이 지식을 교류하고 협력할 기회를 제공하고 있다.
빛 공해 제로·열 차감 ‘스마트 윈도우’ 개발..건물·차량 적용 가능
전 세계 에너지 소비의 약 40%를 차지하는 건물 부문에서, 특히 창호를 통한 열 유입은 냉․난방 에너지 낭비의 주요 원인으로 지적돼왔다. 우리 연구진이 도시 건축물의 냉난방 에너지 절감뿐 아니라, 도심 생활 속 꾸준히 제기돼 온 ‘빛 공해’ 문제를 해결할 수 있는 ‘보행자 친화형 스마트 윈도우’기술을 개발하는데 성공했다.
우리 대학 생명화학공학과 문홍철 교수 연구팀이 사용자의 의도에 따라 창문을 통해 들어오는 빛과 열을 조절하고, 외부로부터의 눈부심까지 효과적으로 상쇄하는 ‘스마트 윈도우 기술’을 개발했다고 17일 밝혔다.
최근에는 사용자의 조작에 따라 빛과 열을 자유롭게 조절할 수 있는 ‘능동형 스마트 윈도우’ 기술이 주목받고 있다. 이는 기존의 온도나 빛 변화에 수동적으로 반응하는 창호와 달리, 전기 신호를 통해 실시간으로 조절이 가능한 차세대 창호 시스템이다.
연구팀이 개발한 차세대 스마트 윈도우 기술인 RECM (Reversible Electrodeposition and Electrochromic Mirror)은 단일 구조의 *전기변색 소자를 기반으로, 가시광선(빛)과 근적외선(열)의 투과율을 능동적으로 조절할 수 있는 스마트 윈도우 시스템이다.
*전기변색 소자: 전기 신호에 따라 광학적 특성이 변하는 특성을 가진 장치
특히, 기존 금속 *증착 방식의 스마트 윈도우에서 문제로 지적돼 온 외부 반사광에 의한 눈부심 현상을 변색 소재를 함께 적용해 효과적으로 억제함으로써, 건물 외벽에 활용 가능한 ‘보행자 친화형 스마트 윈도우’를 구현했다.
*증착: 전기화학 반응을 이용해 Ag+와 같은 금속 이온을 전극 표면에 고체 형태로 입히는 과정
이번 연구에서 개발된 RECM 시스템은 전압 조절에 따라 세 가지 모드로 작동된다.
모드 I(투명 모드)는 일반 유리처럼 빛과 열을 모두 통과시켜 겨울철 햇빛을 실내로 유입시키는 데 유리하다.
모드 II(변색 모드)에서는 레독스 반응(산화-환원 반응)을 통해 *프러시안 블루(PB)와 **DHV+⦁ 화학종이 형성되며 창이 짙은 파란 색으로 변한다. 이 상태에서는 빛은 흡수되고 열은 일부만 투과돼, 프라이버시 확보와 동시에 적절한 실내 온도 조절이 가능하다.
*프러시안 블루: 전기 자극에 따라 무색과 파란색으로 전환되는 전기변색 물질
**DHV+⦁: 전기 자극 시 생성되는 라디칼 상태의 변색 분자
모드 III(변색 및 증착 모드)는 은(Ag+)이온이 환원 반응을 통해 전극 표면에 증착돼 빛과 열을 반사하는 동시에, 변색 물질이 반사광을 흡수함으로써 외부 보행자의 눈부심까지 효과적으로 차단할 수 있다.
연구팀은 미니어처 모델 하우스를 활용한 실험을 통해 RECM 기술의 실질적인 실내 온도 저감 효과를 검증했다. 일반 유리창을 적용한 경우, 실내 온도는 45분 만에 58.7℃까지 상승했다. 반면, RECM을 모드 III로 작동시킨 결과 31.5℃에 도달해 약 27.2℃의 온도 저감 효과를 나타냈다.
또한, 전기 신호만으로 각 상태 전환이 가능해 계절, 시간, 사용 목적에 따라 즉각적으로 대응할 수 있는 능동형 스마트 기술로 평가받고 있다.
이번 연구의 교신저자인 우리 대학 문홍철 교수는 “이번 연구는 가시광 조절에 국한된 기존 스마트 윈도우 기술에서 더 나아가 능동적 실내 열 제어는 물론 보행자의 시야 안전까지 종합적으로 고려한 진정한 스마트 윈도우 플랫폼을 제시한 것”이라며, “도심 건물부터 차량, 기차 등 다양한 응용 가능성이 기대된다”고 밝혔다.
이번 연구 결과는 에너지 분야 국제 저명 학술지인 ‘에이시에스 에너지 레터스(ACS Energy Letters)’ 10권 6호 지에 2025년 6월 13일 자로 게재됐다.
※ 논문명: Glare-Free, Energy-Efficient Smart Windows: A Pedestrian-Friendly System with Dynamically Tunable Light and Heat Regulation
※ DOI: 10.1021/acsenergylett.5c00637
한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 한국기계연구원 기본사업의 지원을 받아 수행됐다.