본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B8%B0%EA%B3%84%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
기계공학과 박용화 교수 연구팀, 대한기계학회-LG전자 퓨처홈테크 챌린지 대상, 동상 수상
우리 대학 기계공학과 인간-기계 상호작용 연구실 (지도교수: 박용화) 정원호 연구원과 임대근 박사과정이 “제 1회 대한기계학회-LG전자 퓨처 홈 테크 챌린지 (KSME-LG Future Home Tech. Challenge)”에서 각각 대상과 동상을 수상했다. 본 수상은 대한기계학회와 LG전자가 공동으로 주관해, 미래기술사회의 혁신을 선도할 창의적이고 실용적인 아이디어를 공모했고 대한기계학회와 LG전자 사내 전문가가 심사했다. 대상을 수상한, 정원호 연구원은 가전 제품에 적용할 DX 관련 기술 내의 Prognostics & Diagnostics 기술로, 전력계통신호를 이용한 회전체 고장 진단 기술을 제안했다. (아이디어 제목: 전류 이미지화 기법을 이용한 회전체 고장진단 기법 개발). 해당 기술은 기존 값비싼 진동센서를 대체하고, 센서 설치에 대한 이슈를 해결하여, 다양한 회전체 작동조건에서도 운용될 수 있는 고장진단 기법으로서, 고장진단 기술의 현장 적용 문제점을 해결할 수 있다. 제안된 방법은 노이즈가 심하거나 다양한 작동조건으로 운용되는 모터뿐만 아니라, 에어컨 압축기, 공조기 등에도 공통적으로 적용할 수 있을 것이라 기대되어, 상용화 관점에서 높은 점수를 받았다. 동상을 수상한, 임대근 박사과정은 가전 제품에 적용할 DX 관련 기술 내의 CAE, VPD(가상제품설계) 관련 기술로, 드럼세탁기 상태진단 모델을 구현하기 위한, 전산역학 기반의 디지털트원 모델 기술을 제안했다 (아이디어 제목: 드럼세탁기 상태진단을 위한 인공지능 및 전산역학 기반의 디지털트윈 개발). 해당 디지털 트윈 기술은 다양한 인정시험 및 설계변경을 가상에서 수행하기 때문에 시제품 제작 및 테스트를 위한 직접경비와 설계변경에 필요한 인력들의 업무시간 단축과 같은 간접경비의 절감을 기대할 수 있다. 제안된 방법은 드럼 세탁기 상태진단 모델을 탑재함으로써 고객에게 상태정보를 제공하고, 사전에 고장 대비 및 이상부품 수급 및 수리일정과 관련된 스케줄링 서비스를 통하여 고객만족을 달성할 수 있다. 해당 시상을 위해, 2022년 대한기계학회 학술대회(개최지: ICC제주)에서 LG전자 오세기 부사장과 대한기계학회 이재종 회장이 시상식에 참여했다. 수상 혜택으로 정원호 연구원과 임대근 박사과정은 각각 500만원과 50만원의 상금, LG전자 H&A본부와의 산학연계 공동연구 그리고 LG전자 입사가산점 혜택이 부여된다. 링크: http://ksme-lg.ksme.or.kr/default.asp
2022.11.14
조회수 6764
기계공학과 권동수 명예교수, 신장결석제거 수술로봇 식약처 제조허가 획득 & IIROS 2022 하라시마 혁신 기술상 수상
< 권동수 기계공학과 명예교수 > 우리 대학 기계공학과 명예교수이자, 교원창업기업 ㈜로엔서지컬의 대표이사인 권동수 교수가 2022년 10월 25일 식품의약품안전처로부터 신장결석제거 수술로봇 프로젝트 자메닉스 Zamenix (제품명 easyUretero)의 제조허가를 획득했다고 밝혔다. 이 제품은 부드럽게 휘어지는 연성요관내시경을 요도로 삽입한 후 원격으로 제어하여 신장 내 결석을 제거하는 로봇으로서 기술의 우수성과 혁신성을 인정받아 2021년 12월 2일 식약처가 주관하는 ‘제 17호 혁신의료기기’로 선정된 바 있다. 이 제품이 성공적으로 의료현장에 적용될 경우 기존 신장결석 제거 수술 대비 수술의 편의성과 정밀도를 높임과 동시에 의료진과 환자에 대한 방사선 노출도 줄일 수 있을 것으로 기대된다. < 신장결석 제거 수술로봇 '자메닉스', 로엔서지컬 제공 > 또한, 권동수 명예교수는 지난 10월 26일 일본에서 열린 세계 최고 권위의 로봇 국제 학술대회 IROS 2022(IEEE/RSJ International Conference on Intelligent Robots and Systems)’에서 IROS 하라시마 혁신 기술상(Harashima Award for Innovative Technologies)을 수상하는 쾌거를 이루었다. < IROS 2022 하라시마 혁신 기술상 수상 장면 > IROS 하라시마 혁신 기술상은 지능형 로봇 및 시스템을 위한 새로운 연구와 발전을 위한 성취, 로봇 공학 및 지능형 시스템에서의 선구적인 활동을 한 IROS 구성원에게 주어지는 상으로, 지난 27년간의 KAIST 로봇 및 햅틱스 연구성과의 결실로 (주)로엔서지컬의 기술과 주력제품인 신장결석제거로봇 프로젝트 자메닉스의 개발로 다시 한번 세계 의료계와 로봇, 공학 분야 학술대회의 이목을 집중시켰다. 권동수 명예교수는 KAIST의 우수 연구성과를 기반으로한 Startup KAIST의 교원-학생 공동창업을 통해 K-Medical 수술로봇 분야의 First mover로서, 이번 식약처 제조허가를 발판으로 수술로봇의 국내 보급 및 미국, 유럽 등의 세계시장에 진출할 계획이다.
2022.10.27
조회수 6808
기계공학과 정원호 연구원(지도교수 박용화), IEEE 산업전자공학회 학술대회 젊은 과학자 상 수상
우리 대학 기계공학과 인간-기계 상호작용 연구실(지도교수: 박용화) 정원호 연구원이 2022년 브뤼셀 (벨기에)에서 개최된 제48회 IEEE 산업전자공학회 학술대회(48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022)에서 젊은 과학자 상(Young Professionals Award)을 수상했다. 본 젊은 과학자 상(Young Professionals Award)은 IEEE 산업전자공학회 학술대회에서 IECON 2022의 발표 논문(1,000여 편) 중 44인의 젊은 연구자를 선발했고, 현장 발표심사를 거쳐 우수자 5인을 선발했고, 그 중 정원호 연구원이 최우수자로 선정됐다. 상패와 함께 2,000 달러의 상금이 수여됐다. 수상에 핵심적인 평가가 되었던 논문은 전류신호를 이용하여 비접촉식으로 모터 권선 결함을 탐지하는 방법을 제안하는 내용이다. 본 논문은 전류 신호의 결함 특징을 추출하기 위해, 희소 사전 학습 기반 전류 이미지화(sparse dictionary learning)와 딥러닝을 활용한 모터 고장진단 기법을 개발했다. 제안된 이미지화 기법은 모터 작동 조건 (예: 부하조건, 모터 용량, 노이즈 등)에 상관 없이 하나의 지표로 고장 진단이 가능하고, 이미지화 기법을 통해 진단 근거를 구체화하면서 진단 정확도를 높이는 장점이 있다. 해당 연구는 기존 고가의 진동센서를 대신해, 비접촉식으로 측정하는 저가형 전류센서를 사용했고, 정상데이터 기반 학습 방법을 이용하여, 고장데이터 없이 고장 분류를 진행한다. 제안된 방법은 노이즈가 심하거나 다양한 작동조건으로 운용되는 모터를 보유하고 있는 현장에서, 비용성 및 효율성 측면에서 높은 활용이 있을 것이라 기대된다. IEEE 산업전자공학회(Industrial Electronics Society)는 산업전자공학 분야에서 가장 역사가 깊고, 전세계 100개국이 넘는 나라로부터 10,000명 이상의 회원을 보유한 학술단체이며, 그 중 IECON 국제학회는 산업전자공학 분야의 최대 학술 행사다.
2022.10.25
조회수 7259
김성용 교수, 10년 주기 해양 원격 탐사 국제학회 기조연설 맡아
우리 대학 기계공학과 김성용 교수가 1980년부터 10년 주기로 열리는 해양과학 분야의 권위있는 원격탐사 국제학회 `우주에서 관측한 바다(OCEANS FROM SPACE)'에서 한반도 주변 고해상도 해양관측 연구에 대한 높은 평가를 받아 기조연설 연사로 초청받았다고 21일 밝혔다. 김 교수는 오는 10월 26일 이탈리아 베니스에서 기조연설을 할 예정이다. 1964년 미국 우즈홀에서 `우주에서 관측한 해양학(Oceanography from Space)'라는 이름으로 처음 열린 본 학회는 1980년부터 매년 10년 주기로 이탈리아 베니스에서 `우주에서 관측한 바다(OCEANS FROM SPACE)'로 열리고 있으며 지난 10년간 해양 원격 탐사 연구 중 주요한 과학 및 기술 분야의 성취, 혁신 및 도전에 관한 내용을 주제로 해양 원격 탐사 커뮤니티의 리더들을 초청하고 공유하는 주요한 학회로서 해양 탐사에 진전을 가져온 새로운 기술과 활동 및 서비스 등을 프로그램으로 구성하고 있다. 2020년 예정됐으나 코로나19로 인해 2번 연기됐으며 2022년 10월 24일부터 28일까지 이탈리아 베니스 산마르코 스쿠올라 그란데(Scuola Grande di San Marco)에서 열릴 예정이다. 김 교수가 발표할 내용은 한반도 주변 고주파 레이더로 관측된 고해상도 표층 해수 유동장과 정지궤도 위성으로 관측된 고해상도 엽록소 농도장의 동시 관측 자료를 해양 난류 관점에서 이론과 실측자료의 비교 분석을 실시해 해양 아중규모(100km 미만 공간규모 및 매시간 이하 시간규모)의 해양 에너지가 전달되고 주입되는 시공간 규모와 기작을 세계 최초로 규명한 것을 담고 있다. 또한, 해양 난류의 실측자료를 기반해 아중규모에서 해양 난류의 이론을 검증하고 보완한 내용도 발표할 예정이다. 본 학회에서 한국인 해양학자 중에는 처음으로 기조연설 연사로 초청받았다. 해당 연구는 2018년 해양학 분야 최상위 저널인 `저널 오브 지오피지컬 리서치-오션스(Journal of Geophysical Research-oceans)'에 출간됐고, 해당 논문은 2019년 해양수산부 해양수산과학기술대상 학술부문 우수상을 수상했다. 김 교수는 "고해상도 해양 난류의 시공간 원격 관측을 통해 해양 난류를 이해하고 기후변화에 영향을 줄 수 있는 대기-해양의 에너지 주입 및 전달에 관한 연구가 해양 원격 관측 커뮤니티에서 좋은 평가를 받아 감사하고 최근 연구비 지원을 통해 계속될 수 있어 감회가 새롭다ˮ고 소감을 전했다. 이번 연구는 한국연구재단 북서태평양 해양-육상-대기 탄소과제 및 해양수산과학기술진흥원의 AI기반 해양수색구조 의사결정 지원 시스템 개발과제를 통해 지속되고 있다. 논문 세부 정보: Lee, E. A. and S. Y. Kim, 2018: Regional variability and turbulent characteristics of the satellite-sensed submesoscale surface chlorophyll concentrations, J. Geophys. Res. Oceans 123(6), 4250 - 4279, doi:10.1002/2017JC013732
2022.10.21
조회수 8224
전기차 노면 소음과 모터 소음을 동시에 차단하는 초경량 차음 메타패널 개발
우리 대학 기계공학과 전원주 교수 연구팀이 전기차의 저주파 대역 노면 소음과 고주파 대역 모터 소음을 동시에 차단할 수 있는 신개념 음향 메타물질 기반 초경량 차음 메타패널을 개발했다고 18일 밝혔다. 음향 메타물질은 자연계에 존재하지 않는 음향학적 유효 물성(음의 질량, 음의 강성 등)을 갖도록 인공적으로 설계된 구조물로, 음향 은폐, 고투과-고집속, 완벽 차음/흡음 등 기존 재료로는 구현이 어려운 성능을 달성할 수 있는 특징이 있다. 내연기관을 대신해 전기모터를 동력원으로 사용하는 전기차는 기존의 내연기관 자동차에서 시끄럽다고 느끼던 엔진 소음이 더는 발생하지 않는다. 하지만, 엔진 소음에 의한 마스킹 효과가 사라지면서 오히려 저주파 대역의 노면 소음이 상대적으로 더 크게 들리거나 엔진을 대신하는 전기모터의 고주파 소음이 또렷하고 거슬리게 들리기도 한다. 미래 모빌리티의 한 축을 담당하고 있는 전기차가 단순히 하나의 운송 수단을 넘어 이동 중 휴식이나 레저 및 업무 활동 등 탑승자에게 필요한 맞춤형 서비스를 제공하는 개념으로 나아가고 있다는 점에서 전기차의 실내 정숙성을 확보하는 것이 매우 중요하다. 특히, 전기차 노면 소음과 모터 소음은 각각 저주파와 고주파로 나뉜 서로 다른 주파수 대역에서 나타날 뿐만 아니라 각각의 대역도 광대역이기 때문에, 이와 같은 소음을 동시에 효과적으로 차단할 수 있는 기술의 개발과 적용이 필요한 시점이다. 현재 상용화된 전기차에서는 소음 차단을 위해 폴리에스터, 열가소성 고무, EVA(에틸렌초산비닐 공중합체) 시트, 금속판 등의 전통적인 흡·차음재가 사용되고 있다. 하지만, 전통적인 흡·차음재의 성능은 재료 자체의 열/점성 소산 특성이나 질량 법칙(투과 손실 6dB(데시벨) 증가를 위해 질량 밀도가 2배 높아져야 함)에 의존하기 때문에 높은 차음 성능을 위해서는 재료의 무게 증가가 불가피하며, 이는 곧 전기차 배터리의 에너지 효율을 감소시키는 원인이 되고 있다. 따라서, 우수한 차음 성능을 발휘하면서도 경량화를 동시에 달성하는 것이 전기차 적용 측면에서 매우 중요한데, 기존의 음향학적 재료나 법칙의 한계를 넘어서야 한다는 점에서 학문적으로도 도전적인 문제였다. 전원주 교수 연구팀은 기존 기술의 한계를 극복함으로써 높은 차음 성능으로 전기차 노면 소음과 모터 소음을 동시에 차단할 수 있는 초경량 차음 메타패널을 개발했다. 연구팀이 개발한 메타패널은 저주파 대역(노면 소음)에서는 음의 유효 질량을 가지면서 고주파 대역(모터 소음)에서는 음의 유효 강성을 갖도록 설계됐으며, 면적밀도 1.51kg/m2의 매우 가벼운 무게로 100~1,750Hz의 넓은 주파수 대역에서 투과 손실 16.7dB(에너지 기준 98%) 이상 차단할 수 있음을 이론적으로 예측했고 제작과 실험을 통해 그 성능을 검증하는 데 성공했다. 이는 동일 차음 성능을 갖는 기존 기술과 비교해 20배 이상 가벼운 무게의 초경량화를 달성했다고 볼 수 있다. (그림 1 참고) 다중 스케일 격자 구조와 멤브레인(얇은 막)으로 구성된 차음 메타패널은 분리된 두 광대역에서 높은 투과 손실을 동시에 구현할 수 있다는 음향학적 특징이 있어, 전기차에 적용될 때 저주파 노면 소음과 고주파 모터 소음을 효과적으로 차단해낼 수 있을 것으로 기대된다. 특히, 메타패널의 기하학적 인자를 쉽게 조절함으로써 원하는 주파수 대역에서 높은 차음 성능을 달성할 수 있으므로, 전기차뿐 아니라 도심 항공 모빌리티(Urban Aerial Mobility, UAM) 등 다양한 미래 모빌리티에 적합하게 주파수 선택적 설계가 가능하다는 장점과 더불어 제작이 쉽다는 응용 측면의 장점도 갖고 있다. 우리 대학 기계공학과 김지완 박사과정(제1 저자), 최은지 박사과정(제2 저자)이 참여한 이번 연구 결과는 기계공학 분야 최상위권 국제 학술지인 `메카니컬 시스템 앤 시그널 프로세싱(Mechanical Systems and Signal Processing) (IF: 8.934, JCR 상위 4/137(2.55%)'에 지난 8월 30일 字 온라인 게재됐다. (논문명: Lightweight soundproofing meta-panel for separate wide frequency bands) 한편 이번 연구는 한국연구재단의 중견연구자지원사업과 글로벌프론티어사업-파동에너지극한제어연구단의 지원을 받아 수행됐다.
2022.10.18
조회수 11783
기계공학과 김성용 교수, 현대미술작가와의 바다를 주제로 한 협업전 참여
우리 대학 기계공학과 김성용 교수가 김재남 작가와 `공기와 바람의 조각: 1,000일간의 기억과 기록'이라는 제목으로 협업한 현대미술 전시회가 전남 여수 GS 칼텍스 예울마루 7층 전시실에서 지난 9월 16일부터 이번 달 30일까지 진행 중이다. 이 전시를 통해 김재남 작가는 김성용 교수의 해양관측 가시화 결과를 현대미술에 접목한 다수의 작업을 선보이고 있다. 홍익대 현대미술관과 금호미술관 등에서의 개인전을 비롯해 100여 회의 그룹전에 참여하는 등 국내외에서 활발한 활동을 하며 두각을 나타내고 있는 김재남 작가와의 협업을 통해 김 교수는 과학이 문화와 어떻게 접목되고 실체화될 수 있는지에 대한 가능성을 보여주고자 했다. 또한, 김 교수는 해양 관측자료들이 분석되고 가시화된 결과들이 심미적 요소를 포함하고 있기에 논문 속의 그림으로만 남는 것이 아니라 미술 작품으로 재탄생하면 일반인들도 쉽게 자연의 현상을 이해하고 감상할 수 있음을 보여주고자 했다. 협업의 재료가 된 논문은 여수해만에서 장기 관측된 표층 해수의 유동에 포함된 태양-달-지구 사이의 인력에 의해 생기는 조류의 계절에 따른 변동성을 가시화한 결과로, 김 교수는 이번 전시에서 이를 확대 및 축소해 자연의 변동성에 담긴 질서와 아름다움을 부각하고자 했다. 해당 논문은 해양학계 최고 저널인 Journal of Geophysical Research-Oceans에 2019년에 출간된 바 있다. 김성용 교수는 “이번 전시를 통해 자연현상을 관측하고 해석한 결과가 과학자들만의 관심사에 머물러 있지 않고, 일반 대중들에게도 과학을 더 쉽고 친근감 있게 소개할 기회가 되어 나아가서는 그 저변을 더 넓혀갈 수 있는 계기가 되기를 바란다”라고 소감을 전했다. 논문 세부 정보: Won, S. I., S. Y. Kim, and K. O. Kim, 2019: Submesoscale surface tidal, vortical, and residual circulations in a semi-enclosed bay, J. Geophys. Res. Oceans, 124(7), 5105 - 5137, doi:10.1002/2018JC014892
2022.10.04
조회수 6320
차세대 친환경 에너지 발전 소자를 통한 해양 모니터링 기술 개발
우리 대학 기계공학과 박인규 교수, 오일권 교수와 한국기계연구원(KIMM) 정준호 박사 공동연구팀이 `차세대 친환경 에너지 발전 소자를 통한 해양 모니터링 기술'을 개발하는 데 성공했다고 20일 밝혔다. 이전에 `다양한 센서 구동을 위한 소형 무선 측정 시스템', `마찰전기 나노발전기를 이용한 해양 에너지 수확 기술', `임프린팅을 통한 고효율 나노구조체 형성 기술'을 개발하는 데 각각 성공했던 공동연구팀은, 표면 나노구조체의 설계와 친환경 소재 선정을 통해 소자 전체 재활용이 가능하며 해양 환경에서 고성능·고안정성을 나타내는 마찰전기 나노 발전기를 구현할 수 있음을 처음으로 보였다. 기계공학과 안준성 박사과정과 김지석 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)' 2022년 8월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : All-Recyclable Triboelectric Nanogenerator for Sustainable Ocean Monitoring Systems) 최근, 기후 변화와 같은 환경 관련 문제가 전 세계적으로 많이 발생하면서, 온실가스 규제, 친환경 에너지 생산, 재활용 가능한 소자 등 이를 해결하기 위한 연구가 국제사회에서 많은 관심을 받고 있다. 그중에서, 특히 마찰전기 나노발전기(triboelectric nanogenerator, 이하 TENG)는 버려지는 기계적 에너지를 전기 에너지의 형태로 수확하는 친환경 재생에너지 소자로서 많은 연구가 진행되고 있다. 하지만, 현재까지 개발됐던 대부분의 TENG는 버려지는 기계적인 에너지를 수확함으로써 화석 연료 사용 감소에 도움이 되지만, 한편으로는 사용된 전극 혹은 마찰 대전 고분자 소재 폐기 과정에서 수많은 전자 폐기물(electronic waste)을 발생시켜 또 다른 환경 문제를 일으킬 수 있다. 최근에는 이를 해결하기 위해 소자의 일부분이 물에 녹아 분해될 수 있는 친환경 소재 기반 TENG가 연구되고 있지만, 재활용과 응용 분야 관점에서 한계에 부딪혀있다. 첫 번째로, 마찰전기를 발생시키는 대전 물질은 물에 녹아 재활용할 수 있지만, 전자를 수확하기 위한 전극 부분의 재사용은 불가능하다. 두 번째로, 물에 녹는 소자 특성으로 인해 TENG의 가장 유망한 적용 분야인 해양 에너지 수확에 응용이 불가능하다. 세 번째로, 현재까지 개발된 재활용 소자 기반 TENG는 기존 상용 소자 기반 TENG에 비해 10~100배 이상 낮은 에너지 수확 성능과 기계화학적 불안정성을 나타낸다. 따라서, 해양 에너지 수확에 적용할 수 있으며 재활용이 가능한 고성능·고안정성 TENG를 개발하는 것은 차세대 친환경 에너지 수확 및 환경 오염 감소에 큰 발전을 이룰 수 있을 것으로 전문가들은 예상하고 있다. 연구팀은 소자 전체 재활용이 가능하며 기계화학적 내구성이 뛰어난 소재·구조 설계를 통해 해양 환경에서 고성능·고안정성을 나타내는 친환경 TENG를 개발했다. 또한, 수확된 해양 에너지를 통해 배터리를 충전하고, 바다 상태(산도, 염도, 온도, 오일 유출) 및 응급 상황 모니터링에 사용되는 전자 소자와 무선 통신 모듈을 구동했다. 이는 해양 에너지를 수확해 다양한 바다 환경을 모니터링할 수 있는 상용 소자들을 구동할 수 있음을 보인 것에서 그 의미가 크다. 연구를 지도한 박인규 교수, 오일권 교수, 한국기계연구원 정준호 박사는 "개발된 친환경 해양 에너지 수확 소자는 범지구적 에너지 문제를 해결할 수 있을 것으로 기대되고, 재활용 가능한 마찰전기 나노 발전기는 추후 바다 에너지를 넘어 친환경 풍력에너지 수확에도 활용될 수 있을 것이다ˮ라며 "이는 친환경 에너지 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 창의연구지원사업, 중견연구자지원사업, 극한물성시스템 제조플랫폼기술의 지원을 받아 수행됐다.
2022.09.20
조회수 9077
차세대 우주-지상간 통신 및 초정밀 시간 안정화 기술 개발
GPS 위성간 시간 동기화로 네비게이션 위치 측정 정밀도를 높일수 있는 등 초정밀 시간 표준의 상호 비교/검증을 위해, 2012년 독일 표준연구원과 막스플랑크 양자광학연구소는 광섬유를 이용한 광시계를 비교 연구하였으나, 이는 광섬유 매설구간 활용으로 인해 공간적 제약이 있어, 최근 활발해지는 시간표준의 비교/전송 연구와 다양한 표준 주파수 응용기술에 대응하는 데 큰 어려움이 있어 왔다. 우리 대학 기계공학과 김승우, 김영진 교수 공동연구팀은 대기 중으로 광신호를 전송하여 공간의 제약을 뛰어넘는 차세대 우주-지상 간 광-시간 동기화의 원천 기술인, 대기를 통한 광주파수 전송 및 펨토초 레이저 안정화* 기술을 개발했다고 5일 밝혔다. *펨토초 레이저 광 빗: 시간/주파수 표준으로 활용할 수 있는 광대역(수백만 개의 주파수의 중첩) 레이저, 빛의 스펙트럼이 머리빗과 닮았다 하여 붙여진 이름이다. 시간은 모든 물리량 중에서 가장 기본이 되는 물리단위로 다양한 물리단위를 정의하는 데 활용되기 때문에 우수한 시간 표준을 개발하는 것은 차세대 우주 규모의 측정 분야에서 다양한 물리량을 정확하고 정밀하게 측정을 가능케 한다. 이를 위해 먼저 연구팀은 1/1,000,000,000,000,000(천조분의 일) 초에 해당하는 시간 폭을 가지는 매우 정밀한 펨토초 레이저 광 빗에 기반한 시간 표준을 개발했다. 하지만 개발에만 수년이 걸리고, 시스템적으로 큰 노력이 들어가는 시간 표준의 개발을 효과적으로 활용하기 위해서 연구팀은 안정화된 레이저의 전송을 통해 다양한 환경에서 시간 표준을 효과적이고 효율적으로 활용할 수 있는 연구에 집중해 왔다. 대기를 통해 전송받은 레이저를 펨토초 레이저 광 빗 안정화에 활용해 수백 테라헤르츠(THz) 주파수 영역에서 4 테라헤르츠(THz)의 대역폭에 이르는 안정화 효과를 얻을 수 있었으며, 안정화된 광 빗을 통해 실질적으로 다양한 분야에 이 기술이 활용될 수 있음을 연구팀은 증명했다. 이는 차세대 지상-우주 간 시간 동기화를 통해 다양한 응용연구가 수행될 수 있음을 뜻한다. 아울러, 200~500 GHz의 주파수를 사용하는 차세대 통신 주파수 대역인 6G 실현을 위해서는 핵심 지역에 해당 주파수를 정밀하게 전송하여야만 하는데 이에 활용 가능하다. 기계공학과 양재원 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `빛: 과학과 응용(Light: Science and Applications)' 8월 12일 字 11권 253호에 출판됐다. (논문명 : Frequency comb-to-comb stabilization over a 1.3-km free-space atmospheric optical link). 연구팀은 대기를 통과하는 레이저의 우수한 시간 표준 특성이 유지될 수 있도록 하는 데 성공했다. 이후 연구팀은 전송된 레이저를 펨토초 레이저 광 빗의 안정화에 적용해 펨토초 레이저가 수 km 떨어진 시간 표준에 해당하는 안정도를 가질 수 있다는 것을 검증했다. 동시에 펨토초 레이저 광 빗을 적용해 다양한 응용연구를 수행할 수 있음을 검증했다. 주저자인 양재원, 이동일 연구원은 "지상-위성 간 광-시간 동기화에 관한 원천기술 개발을 통해 최근 관심이 높아지고 있는 우주의 다양한 측정 응용에 활용할 수 있다는 것을 실질적으로 검증을 수행했다ˮ라고 말했다. 한편 이번 연구는 한국연구재단의 과학기술분야 기초연구사업-개인연구사업- 리더연구(국가과학자)지원을 받아 수행됐다.
2022.09.05
조회수 7745
상용 디젤로부터 수소 생산 가능한 개질 촉매 개발
우리 대학 기계공학과 배중면 교수, 이강택 교수와 한국에너지기술연구원(KIER) 이찬우 박사 공동 연구팀이 상용 디젤로부터 수소 생산이 가능한 고활성, 고내구성 디젤 개질 촉매 개발에 성공했다고 16일 밝혔다. 연료 개질(fuel reforming)은 탄화수소로부터 촉매 반응을 통해 수소를 추출하는 수소 생산 기술이다. 액체 연료인 디젤은 수소 저장 밀도가 높고 운반과 저장이 쉽다는 장점이 있어 디젤 개질을 통한 수소 공급 장치를 헤비트럭의 보조전원장치, 잠수함의 공기불요추진체계 등 모바일 연료전지 시스템에 적용하고자 하는 연구가 지속돼왔다. 그러나 디젤은 고 탄화수소의 혼합물로 긴 사슬 구조의 파라핀, 이중 결합을 갖는 올레핀, 벤젠 고리 구조를 갖는 방향족 탄화수소를 포함하고 있어 고 탄화수소를 효과적으로 분해하기 위한 높은 활성도의 촉매가 요구된다. 그뿐 아니라, 촉매의 성능 저하 요인인 코킹 및 열 소결에 대해 강한 내구성을 갖는 촉매가 요구돼 디젤 개질 기술 활용에 어려움을 겪어왔다. 연구팀은 용출(산화물 지지체에 이온 형태로 고용시킨 활금속을 열처리를 통해 금속나노입자 형태로 지지체 상에 고르게 성장시키는 방법) 현상을 통해 합금 나노입자를 형성하도록 촉매를 설계함으로써 고활성, 고내구성 디젤 개질 촉매를 개발하는 데 성공했다. 용출된 금속 나노입자는 지지체와 강한 상호작용을 갖는 특성이 있어 고온에서 높은 분산도를 유지할 수 있고, 이종 금속 간 합금을 형성해 상승효과로 촉매 성능 향상을 노릴 수 있다는 점에서 착안했다. 연구팀은 산화환원반응 촉매의 지지체로 흔히 쓰이는 세리아(CeO2)의 격자 내 백금(Pt)과 루테늄(Ru)을 미량 침투시킨 다성분계 촉매를 제조하기 위해 용액 연소 합성법을 도입했다. 이 촉매는 디젤 개질 반응 환경에 노출되었을 때 백금과 루테늄이 지지체 표면으로 용출된 후 백금-루테늄 합금 나노입자를 형성한다. 연구팀은 촉매 분석뿐만 아니라 밀도범함수 이론 기반 계산을 통해 활금속의 용출 및 합금 형성에 대한 거동을 에너지적 관점에서 규명하는데 성공했다. 백금-루테늄 합금 촉매를 사용해 기존 단일 금속 촉매와 개질 성능을 비교해 본 결과, 개질 활성도가 향상돼 저온(600oC, 기존 800oC)에서도 100%의 연료전환율을 보였으며, 장기 내구성 평가(800oC, 200시간)에서 성능 열화 없이 상용 안정적으로 상용 디젤로부터 수소를 생산하는데 성공했다. 우리 대학 기계공학과 이재명 박사과정이 제1 저자로, 한국에너지기술연구원 연창호 박사과정, 기계공학과 오지우 박사, 한국에너지기술연구원 한광우 박사, 기계공학과 유정도 박사, 한국기초과학지원연구원 윤형중 박사가 공저자로 참여했으며, 한국에너지기술연구원 이찬우 박사, 기계공학과 이강택 교수, 배중면 교수가 교신저자로 참여한 이번 연구는 환경·재료·화학 분야 국제 학술지 `어플라이드 카탈리시스 비: 인바이러멘탈, Applied Catalysis B: Environmental'(IF 24.319, JCR분야 0.93%)에 지난 6월 17일 字 온라인판에 게재됐다(논문명: Highly Active and Stable Catalyst with Exsolved PtRu Alloy Nanoparticles for Hydrogen Production via Commercial Diesel Reforming). 배중면 교수는 "상용 디젤로부터 수소를 안정적으로 생산할 수 있다는 점에서 매우 의미있는 성과이며, 초기 수소 경제 사회에서 모바일 연료전지 시스템의 활용성 제고에 크게 이바지할 것으로 기대된다ˮ며, "이번 연구에서의 촉매 설계에 대한 접근법은 개질 반응뿐만 아니라 다양한 분야에서 응용 및 적용될 수 있을 것이다ˮ라고 말했다. 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행됐다.
2022.08.16
조회수 10788
탄소중립을 위한 차세대 에너지 변환기술인 고성능 프로토닉 세라믹 연료전지 개발 성공
우리 대학 기계공학과 이강택 교수 연구팀이 마이크로파를 이용한 초고속 소결 공정을 통해 고성능 프로토닉 세라믹 연료전지(PCFC) 개발에 성공했다고 3일 밝혔다. 기존의 산소 이온 전도성 고체 산화물 연료전지(SOFC)와 달리, 프로토닉 세라믹 연료전지는 양성자 전도성 세라믹 전해질의 높은 이온 전도도와 낮은 활성화 에너지 특성으로 인해, 600oC 이하 저온에서 고효율로 전력 변환 및 수소 생산이 가역적으로 가능한 에너지 변환 시스템으로 이는 수소전기차, 수소 충전소, 건물 및 선박용 발전시스템 등에 활용이 가능한 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다. 이러한 프로토닉 세라믹 연료전지는 난소결성 바륨 기반 산화물 전해질을 사용하는데, 이를 치밀화하기 위해서 1,500oC 이상 고온에서 장시간 소결(세라믹 입자를 가열하여 단단하게 결합시키는) 공정이 필수적이다. 하지만, 이러한 극한 공정 중에 산화물 내부에서 발생하는 양이온 확산으로 화학적 조성이 불안정해지는 치명적인 문제가 있었다. 이를 해결하기 위해 다양한 연구가 진행되고 있지만, 대부분 실험실에서 국소적으로 가능한 방법들이 보고되고 있으며, 실용적으로 상용화가 가능한 새로운 제조 공정의 연구가 시급한 실정이다. 연구팀은 이러한 문제점을 해결할 방법으로 기존에 복사열로 장시간 (300분) 소결하는 방법 대신 흔히 전자레인지나 오븐 등에 쓰이는 마이크로파를 사용해 5분 만에 초고속 소결을 해 이론적 화학조성의 전해질을 갖는 프로토닉 세라믹 연료전지를 개발하는 데 성공했다. 이와 동시에, 초고속 온도 상승으로 연료극이 나노 구조화돼 전기화학적 활성 영역 또한 크게 확장됨을 증명했다. 연구팀은 이와 더불어 3차원 형상 복원 기술을 통해, 연료극 입자 미세화로 인한 삼상계면 길이의 증가가 전극 표면 활성 반응을 가속화하는 미세구조와 전기화학 특성 간의 상관관계를 규명했다. 연구팀이 개발한 프로토닉 세라믹 연료전지는 현재까지 보고된 동일 소재의 연료전지 중 가장 우수한 성능을 보였으며, 장시간 (800시간) 구동에도 매우 높은 안정성이 확인돼, 마이크로파 기반 초고속 제조 공정 도입의 이점을 효과적으로 증명했다. 우리 대학 기계공학과 김동연, 배경택 박사과정생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지인 `에이씨에스 에너지 레터스, ACS Energy Letters' (IF:23.991) 6월 29일 字 온라인판에 게재됐다. (논문명: High-Performance Protonic Ceramic Electrochemical Cells) 이강택 교수는 "이번 연구를 통해 마이크로파를 이용한 초고속 제조 공정이 기존 공정의 난제를 해결하고 프로토닉 세라믹 연료전지 성능을 극대화할 수 있음을 실험적으로 증명했고, 이는 탄소중립 사회 실현을 앞당길 수 있는 고성능 차세대 에너지 변환기술 발전의 촉매 역할을 할 것ˮ 이라고 말했다. 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2022.08.03
조회수 17130
기계공학과 박인규 교수, 팽창하는 입자를 이용한 불규칙한 마이크로 돔 구조 기반 고감도 압력센서 개발
우리 대학 기계공학과 박인규 교수 연구팀이 한국생산기술연구원 조한철 박사와 공동 연구를 통해 3D 마이크로 구조 기반의 표면 형태 제어 기술 및 고감도 압력센서 설계 관련 원천기술을 개발했다. 최근 인간과 전자기기 간의 상호작용 기술의 중요성 증가에 따라, 그 매개체 역할을 하는 센서 기술 개발에 대한 관심이 증가하고 있다. 고성능 센서 기술은 스마트 기기, 보안 및 안전, 의료 및 헬스케어 분야와 같은 고부가가치 산업에 주로 적용되고 있다. 최근에는 뛰어난 센서 특성과 함께 유연한 특성으로 인해 사람의 피부와 같은 굴곡진 부위에 쉽게 부착 가능한 유연 압력센서 및 웨어러블 센서 응용에 대한 관심이 급증하고 있다. 특히, 표면에 3D 마이크로 구조가 어레이된 필름을 사용하면 센서의 전반적인 특성을 향상시킬 수 있어, 3D 마이크로 구조의 크기 및 밀도를 제어할 수 있는 기술이 필수적으로 요구된다. 하지만, 기존의 연구들은 원하고자 하는 패턴의 역상으로 제작된 몰드에 액상의 엘라스토머를 부어 제작하기 때문에 몰드 제작 공정이 필수적으로 요구되며, 3D 마이크로 구조의 크기/밀도 등을 조절하는데 한계가 있어 제작 유연성에 있어 큰 한계점이 존재했다. 공동 연구진은 이러한 문제를 해결을 위해, 온도에 의해 팽창하는 입자를 이용하여 표면에 3D 마이크로 구조를 제작하는 기술을 개발하였다. 본 연구에서 핵심으로 사용한 물질은 온도에 의해 팽창하는 미소 입자이다. 이 입자는 상온에서는 초기 상태인 6~11 ㎛를 유지하는데, 특정 온도를 가하면 내/외부의 변화로 인해 약 30~50 ㎛로 크기가 변하게 된다. 해당 입자를 유연 엘라스토머와 혼합하여 유연 필름을 제작한 뒤에 열팽창을 시키는 표면에 3D 마이크로 구조가 어레이된 유연 필름의 제작이 가능하다 (그림 1). 이를 활용하여 고민감도의 유연 압력센서에 적용하였다 (그림 2). 본 센서는 기존에 제안되었던 3D 마이크로 구조 기반 압력센서에 비해 높은 감도를 보여주었으며 내구성/검출한계/응답속도 등에서도 뛰어난 성능을 보였다. 이를 활용하여 다양한 사용자 맞춤형 어플리케이션에 적용하였다. 첫 번째로 손가락형 압력센서에 적용하였다. 개발된 손가락형 압력센서는 높은 감도로 인해 미세한 압력 변화를 감지할 수 있었으며 이를 이용하여 손가락의 미세한 맥박 변화, 물체를 누르는 힘 등에 대해 정밀하게 감지/구분할 수 있음을 보였다. 두 번째로는 대면적 어레이 센서로 제작하여 인간-컴퓨터 상호작용에 적용하였다. 이를 통해 손목의 움직임을 감지하고 획득한 신호를 기계학습에 적용하여 마우스 커서를 움직일 수 있음을 증명하였다 (그림 3). 이번 연구는 제 1 저자로는 정영 박사후연구원(KAIST 기계공학과)과 최중락 박사과정 학생(KAIST 기계공학과)이, 교신저자로는 조한철 박사(한국생산기술연구원)와 박인규 교수(KAIST 기계공학과)가 참여했으며, 과학기술정보통신부의 재원으로 한국연구재단의 중견연구자 과제 (박인규 교수), 창의도전연구 과제 (정영 박사), 신진연구자 과제 (조한철 박사)의 지원을 받아 수행되었다. 본 연구 결과는 재료연구 분야 최상위 학술지 중 하나인 Advanced Functional Materials (Impact factor 18.81) 지 2022년 7월 4일자로 논문이 게재되었으며, 후면 표지논문 (Back cover)에 선정되었다. (논문명: “Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres”)
2022.08.01
조회수 10252
음파를 이용한 세포 자극 미세시스템 개발
우리 대학 연구진이 면역세포를 대상으로 기계적 자극을 가할 수 있는 고주파수 음파 기반의 미세유체 시스템 기술을 개발했다. 미국 스크립스 연구소의 아르뎀 파타푸리안 교수는 기계적 자극에 반응하는 세포 압력센서를 발견한 공로로 2021년도 노벨 생리의학상을 공동 수상했다. 또한 최근 다수의 연구를 통해 기계적 자극이 면역세포의 암세포 제거 기능에도 깊게 관여하는 기전이 보고되고 있다. 이에 기계적 자극을 인가할 수 있는 다양한 형태의 체외 동적 세포배양 시스템이 개발돼왔다. 그러나 펌프, 자력 교반기 등의 기존 시스템은 요구되는 시료 양이 비교적 크고, 부품과 세포 간의 접촉이 수반되어 잠재적 시료 오염과 세포 활성 저하의 문제점을 가진다. 문제 해결을 위해 기계공학과 전성윤 교수 연구팀(바이오미세유체 연구실)과 성형진 교수, 전남대학교 박진수 교수 연구팀은 필요한 시료 양이 수십 마이크로리터에 불과한 미세유체 칩에 기계적 자극을 비접촉식으로 만들어내고 그 크기를 정밀하게 제어할 수 있는 표면탄성파 인가 기술을 접목하였다. 해당 시스템의 빗살무늬전극에 고주파수 교류신호를 인가하여 표면탄성파를 형성하고, 표면탄성파는 기판을 따라 진행하여 미세유체 칩 내부의 유체에 흐름유동을 만들어낸다. 이 흐름유동은 유체 내부의 면역세포에 기계적 자극을 가함으로써 면역세포으로의 칼슘 이온 유입을 이끌어낸다. 연구팀은 “이번 연구는 고주파수 음파 기반의 비접촉식 기계적 자극 전달 시스템을 개발한 데 의의가 있으며, 음파를 접목한 미세유체 칩이 ‘차세대 동적 배양 시스템’으로써 적극적으로 활용될 가능성을 제시하였다”고 본 연구의 의의를 설명했다. 김승규 박사가 주저자로 참여한 이번 연구는 국제학술지 ‘Advanced Science' 16호의 앞면 내부 표지논문으로 게재되었다. (논문명: Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor) 이번 연구는 한국연구재단 중견연구자사업과 보건산업진흥원 글로벌바이오메디컬연수자사업 및 BK 21 Plus program의 지원을 받아 수행되었으며, 우리 대학 남현오 박사과정과 전남대학교 차범석 석사과정이 공동연구자로 참여했다. #논문정보 Kim, S., Nam, H., Cha, B., Park, J., Sung, H. J., & Jeon, J. S. (2022). Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor. Advanced Science, 9(16), 2105809. https://doi.org/10.1002/advs.202105809
2022.06.22
조회수 7938
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 25