본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B8%B0%EA%B3%84%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
반도체 다층 소자의 개별 층 두께를 옹스트롬 정확도로 비파괴 검사하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 삼차원 낸드플래시 메모리(이하 3D-NAND)의 비파괴적인 검사를 위해 광학 측정법과 머신러닝을 사용한 다층 두께 측정기술을 개발했다. 이 기술은 200층 이상의 초고밀도 3D-NAND 소자 공정 과정에서 전수검사 방법으로 사용돼 공정의 효율을 극대화할 수 있을 것으로 기대된다. 3D-NAND 메모리는 수백층의 메모리 셀이 적층되어 있는 메모리 반도체로, 기존의 평면형 플래시 메모리와 비교하여 저장용량과 에너지 효율이 매우 우수하여 개인용 USB부터 서버 시스템까지 다양하게 사용되고 있다. 기존에는 수직으로 적층된 반도체 셀들의 두께를 측정하기 위하여 전자현미경을 사용하였다. 하지만 전자현미경을 사용한 방법은 샘플의 단면을 이미징하기 위하여 샘플을 절단해야 하고 비용도 많이 들기 때문에, 전수검사로서는 적합하지 않은 문제가 있었다. 연구팀은 반도체 다층 구조가 초고속 광학 시스템에 자주 사용되는 유전체 거울의 구조와 유사하다는 점에 착안하여, 유전체 거울의 분석에 활용되는 광학 스펙트럼 측정법을 반도체 다층 구조에도 적용했다. 연구팀은 엘립소미터(ellipsometer)와 스펙트로포토미터(spectrophotometer)를 이용한 반도체 다층 샘플의 스펙트럼 측정과 머신러닝 알고리즘을 활용하여 200층이 넘는 반도체 물질의 각 층 두께를 1.6 옹스트롬 (1Å = 1미터의 100억 분의 1)의 평균제곱근오차로 예측할 수 있는 방법을 개발했다. 이 기술은 삼차원 반도체 소자의 검수 공정, 적층 공정, 그리고 식각 공정의 정확도를 크게 향상시킬 수 있을 것으로 기대된다. 연구팀은 또한 시뮬레이션 스펙트럼 데이터를 생성해 개별 층의 두께 불량을 검출할 수 있는 머신러닝 학습법도 개발했다. 그 결과 반도체 물질 적층 시 목표로 설정한 두께보다 약 50Å만큼 얇게 제작된 샘플들을 정상 범주의 샘플들로부터 성공적으로 분리할 수 있었다. 연구팀이 개발한 불량샘플 검출법은 시뮬레이션 데이터를 활용하기 때문에 큰 비용이 들지 않으며, 공정의 초기에 발견될 수 있는 불량 샘플들을 효과적으로 검출할 수 있을 것으로 기대된다. 최근 글로벌 IT 기업들의 서버 시스템에 대한 수요가 늘어나고 높은 저장용량을 가진 스마트 기기들이 개발됨에 따라, 초고밀도, 초고효율을 갖는 3D-NAND 메모리가 반도체 시장에서 각광받고 있다. 이번 연구 결과는 다양한 삼차원 반도체 소자들의 비파괴적인 검수를 위해 활용될 수 있다. 김 교수는 “비파괴적인 광학 측정법과 머신러닝을 결합한 방법은 다양한 반도체 검수 공정에도 적용할 수 있다”고 밝히며, “다양한 반도체 소자들의 형상이나 공정 조건 모니터링에도 광학측정법과 머신러닝을 결합한 접근방식을 활용할 것”이라고 말했다. 기계공학과 곽현수 박사과정 학생이 제1저자로 참여하고 삼성전자 메모리 계측기술팀과의 산학협력연구로 수행된 이번 연구는 국제학술지 ‘라이트: 어드밴스드 매뉴팩처링(Light: Advanced Manufacturing)’ 창간호에 1월 12일 게재됐다. (논문명: Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning) 이번 연구는 삼성전자 산학연구과제의 지원을 받아 수행됐다.
2021.01.13
조회수 67342
공경철 교수팀, 사이배슬론 2020 국제대회 1·3위 석권
우리 대학 기계공학과 공경철 교수가 이끄는 팀 엔젤로보틱스가 지난 13일 우리 대학 본원 캠퍼스에서 열린 사이배슬론(Cybathlon) 2020 국제대회에서 압도적인 기량을 선보이며 금메달과 동메달을 석권했다. 착용형 외골격 로봇 종목에 출전한 김병욱 선수(47세, 남)는 ▴소파에서 일어나 컵 쌓기 ▴장애물 지그재그 통과하기 ▴험지 걷기 ▴계단 오르내리기 ▴옆 경사로 통과 ▴경사로 및 문 통과하기 등 6개의 임무를 3분 47초 만에 완벽하게 수행하며 금메달을 차지했다. 함께 출전한 이주현 선수(20세, 여) 역시 모든 임무를 성공적으로 수행하는데 5분 51초를 기록해 동메달의 주인공이 됐다. 은메달은 6개의 미션을 4분 40초 동안 수행한 스위스 팀이 차지했다. 다른 출전팀과 비교해 월등한 기술력과 선수들의 로봇 운용 능력을 선보인 공 교수팀은 2016년 열린 1회 대회에서 김병욱 선수가 동메달을 획득한 이후 4년 만에 세계 최정상의 자리에 올랐다. 김병욱 선수는 "4년 전 동메달의 아쉬움을 이번 대회 금메달로 깨끗하게 풀어냈다ˮ고 말했다. 이어, "공경철 교수님과 여러 연구진이 있었기에 오늘의 결과가 가능했다ˮ고 감사의 인사를 전했다. 이어, 이주현 선수는 "순위권에 들 수 있을까 걱정을 많이 했는데 동메달을 따게 되어 기쁘다ˮ며, "이번 대회에 참가하는 동안 보고 배운 연구진의 열정을 마음에 교훈으로 간직하고 앞으로 살아갈 것ˮ이라고 대회를 마무리한 소감을 밝혔다. 이번 대회에서 선수들이 착용한 워크온슈트4는 KAIST 공경철 교수의 연구팀을 중심으로 (주)엔젤로보틱스, 세브란스 재활병원, 영남대학교, (주)에스톡스, 재활공학연구소 등이 협업하고 산업기술평가관리원(산업통상자원부)을 비롯한 여러 기관의 지원을 바탕으로 개발됐다. 로봇 기술을 각 선수의 신체 특성 및 보행 패턴에 최적화시켜 적용하기 위해 올해 2월 대표 선수 선발 이후 9개월간 최정수 영남대학교 로봇기계공학과 교수와 우한승 KAIST 기계공학과 박사 후 연구원의 감독 아래 훈련을 진행했다. 이전 모델과 비교해 연속 보행 속도를 8배 이상 높이고 착용자가 느끼는 무게감을 현저히 낮추는 등 4년간의 연구를 통해 향상시킨 워크온슈트4의 기술력은 공 교수팀이 이룬 이번 쾌거의 바탕이 됐다. 공경철 교수는 "금메달과 동메달을 동시에 석권한 것은 하반신 마비 장애인 선수들의 노력과 더불어 워크온슈트4에 적용된 로봇 기술의 우수성을 증명하는 것ˮ이라고 소감을 밝혔다. 이어, "아이언맨이 실제로 개발된다면 대한민국에서 가장 먼저 완성될 것ˮ이라고 자신감을 드러냈다. 실제로 공 교수팀은 국제대회 참가용 수트 개발과 동시에 (주)엔젤로보틱스를 창업해 착용형 로봇의 상용화에 앞장서고 있다. 최근 하지 부분 마비 환자를 위한 보행 재활 훈련 로봇의 의료기기 인증을 마무리하고 세브란스 재활병원 등 실제 치료 현장에 보급하는 단계에 이르렀다. 한편, 총 20개국 53개 팀이 참여한 사이배슬론 2020 국제 대회는 코로나19의 확산으로 출전 선수들이 속한 전 세계 33개 지역에 경기장을 짓고 다원 중계를 하는 방식으로 진행되었다. 공 교수팀이 출전한 착용형 외골격 로봇 종목에는 8개국 소속 12명의 선수가 기량을 겨뤘다.
2020.11.16
조회수 31946
성형진 교수 연구팀, 랩온어칩(Lab on a Chip)지 표지논문 게재
우리 대학 기계공학과 성형진 교수 연구팀(초세대협업연구실)이 고주파수 표면탄성파 기반 마이크로스케일 음향흐름유동을 이용해 나노리터급 액적 내 화학적 농도 제어 기술을 개발했다. 동전 크기의 초소형 미세유체칩 내에 서로 섞이지 않는 두 유체로 조성된 마이크로스케일 액적을 기반으로 하는 액적 기반 미세유체역학 분야에서 개별 액적 내 화학적 농도를 제어하기 위해 그동안 많은 노력이 기울여져 왔다. 하지만 지금까지 개발된 액적 내 화학적 농도 제어 기술은 복잡한 미세유로 혹은 별도의 외부 구동시스템이 필요하거나, 만들어진 액적의 병합 혹은 희석을 통해 액적 내 화학적 농도를 제어하기 때문에 동적 제어가 불가능하고 액적 간 화학적 농도 구배를 형성하기 어렵다는 한계를 지니고 있었다. 이번 연구에서 성형진 교수 연구팀은 고주파수 표면탄성파를 미세유체칩 내 유동에 집속하여 음향흐름유동을 발생시켜 농도 제어가 필요한 액상 화학 시료와 완충용액을 혼합한 후, 혼합된 액상 시료를 분산상으로 하는 나노리터급 액적을 생성함으로써 액적 내 화학적 농도의 정밀 제어할 수 있음을 보였다. 개발된 기술을 활용하여 미세유체칩 내 고속으로 생성되는 개별 액적의 화학적 농도를 동적으로 제어할 수 있으며, 더 나아가 액적라이브러리 내 액적 간 화학적 농도 구배를 자유롭게 형성할 수 있는 최초의 기술이라는 점에서 기존 기술보다 진일보한 기술이라는 평가를 받았다. 아울러 평면파 각스펙트럼 이론과 등가 구경 이론을 이용해 원형 빗살무늬전극에서 생성되는 집속 표면탄성파의 집속점 위치가 기하학적 중심이 아니라는 점을 밝혔다. 또한 MHz 대역의 초음파 대역의 압전기판 위 표면탄성파 및 유체 내 종파의 감쇄에 의해 생성되는 마이크로스케일 음향흐름유동 및 와류를 전산유체역학적으로 가시화하여 인가되는 표면탄성파의 진폭과 생성되는 음향흐름유동장 사이의 관계를 규명해 효율적인 마이크로스케일 유동 혼합을 위한 조건을 제시했다. 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체역학 및 마이크로타스(microTAS) 분야의 세계적 권위 국제학술지인 랩온어칩(Lab on a Chip)지 2020년 21호의 표지논문으로 선정됐다 (논문명: Acoustofluidic generation of droplets with tunable chemical concentrations). 이는 성형진 교수의 Lab on a Chip 학술지 2016년 4호, 17호, 2017년 6호, 2018년 3호, 19호에 이은 여섯 번째 표지논문으로 미세유체역학 분야의 선도적 연구 성과다. 성형진 교수 연구팀은 그동안 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제학술지에 380여편의 논문을 게재했으며, 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 중견연구와 초세대협업연구실의 지원으로 수행됐다. 박진수 박사 (현 전남대 교수)와 성형진 교수는 “이번 연구에서 개발된 음향미세유체역학 기술을 통해 마이크로스케일 액적 내 화학적 농도를 칩 내에서 정밀·동적 제어하고 액적 간 농도 구배를 형성할 수 있는 최초의 기술로서, 개발된 기술이 약물스크리닝, 단일 세포 및 입자 기반 분석, 기능성 마이크로캡슐 합성 등 액적 기반 미세유체역학 시스템이 사용되는 다양한 분야에서 핵심 원천기술로 널리 활용될 수 있을 것으로 기대된다”라며 연구 의의를 밝혔다.
2020.11.10
조회수 34640
액정화면 깨뜨리지 않고 부드럽게 터치하는 인공손가락 개발
우리 대학 연구진이 액정 같이 깨어지기 쉬운 화면을 부드럽게 터치해 다양한 작업을 할 수 있는 인공손가락을 선보였다. 기계공학과 오일권 교수 연구팀이 스마트폰이나 햅틱 반응형 디스플레이를 정교하게 터치할 수 있는 소프트 터치 액츄에이터 기술을 개발했다고 밝혔다. 연구팀은 부드럽고 얇은 박막형의 소프트 터치 *액츄에이터를 원격으로 조정, 스마트폰 화면 위에서 전자피아노 연주하기, 전자책 넘기기, 화면스크롤하기 등을 시연해냈다. ※ 액츄에이터 : 전기적 신호를 기계적 운동으로 변환하는 장치 일종의 디지털 촉각인 ‘햅틱’을 구현, 사람 또는 전자디바이스와 섬세한 피드백을 주고받는 한편 가상현실이나 증강현실을 보다 실감나게 하려는 연구가 활발하다. 주로 부드러운 인공근육 기반 소프트 액츄에이터에 대한 연구가 많이 이뤄지고 있지만, 낮은 전압에서는 반응속도가 너무 느려 터치형 액츄에이터로 활용하기에 어려움이 있었다. 인체에 나쁜 영향을 주거나 디바이스의 오작동을 유발하지 않으면서 터치 피드백을 주고받기 위해서는 저전압 구동이 전제되어야 하기 때문이다. 이에 연구팀은 저전압에서도 빠르게 반응할 수 있는 높은 효율의 소프트 액츄에이터를 위한 새로운 소재를 물색하였다. 유연성을 위해 금속을 배제한 공유결합으로 된 다공성 고리화합물(*트라이어진 고리)을 합성하고 널리 쓰이는 전도성 고분자(PE DOT-PSS)를 결합했다. ※ 트라이어진 고리(Covalent Triazine Framework, CTF) : 다공성 내인성 미세조도(PIM-1) 고분자로 이루어진 물질 실제 이 소재의 액츄에이터로 만든 인공손가락은 낮은 전압(±0.5V)으로도 빠르게 큰 변형을 만들 수 있어 부드러운 터치반응을 유도할 수 있었다. 핵심은 다공성 탄소구조체로 인해 비표면적을 극대화한 것이다. 비표적을 넓혀 표면전하량을 늘리는 한편 작동속도와 반응성도 높일 수 있었다. 실제 0.5V에서 17mm 정도 구부러지는 변형을 확인했다. 개발된 소프트 터치 액츄에이터를 배열형태로 확장하여 스마트폰 전자피아노 어플리케이션 위에서 연속적 터치를 통해서‘Happy Birthday’를 연주하였으며 전자책넘기기와 화면스크롤 기능 등을 구현했다. 과학기술정보통신부와 한국연구재단이 추진하는 리더연구사업(창의연구)의 지원으로 수행된 이번 연구의 성과는 국제학술지 ‘네이처 커뮤니케이션스(Nature Communications)’에 10월 23일 게재됐다.
2020.11.05
조회수 34127
김성용 교수, 2020 한국해양학회 우수논문상 수상
우리 대학 기계공학과/인공지능연구소 김성용 교수가 11월 5일 경주 화백컨벤션센터에서 열린 2020 한국해양학회 추계학술대회에서 물리해양 분야 우수논문상을 수상했다. 김성용 교수는 '준개방형 만에서의 아중규모 조류, 와동류와 잔차류의 표층 순환(Submesoscale surface tidal, vortical, and residual circulations in a semi-enclosed bay)'을 제목으로 해양분야 최고의 국제 학술지인 미국 지구물리학회의 ‘저널 오브 지오피지컬 리서치-오션스 (Journal of Geophysical Research-Oceans)’에 논문을 게재했으며, 아중규모 해양현상의 이해와 규명에 크게 선도하고 기여한 점을 인정받아 수상했다. 이번 논문은 여수해만에서의 해수 유동을 해양관측과 수치모델링을 통해 아중규모 조류, 와동류 및 잔차류의 주요한 표층 해수 순환과 조류에 의한 에너지의 소진을 주요 내용으로 다루고 있다. 대양에서의 아중규모 현상이 중규모 와동류와 경압불안정성에 의해 발생하는 것과 달리, 연안에서의 아중규모 현상은 조류와 해안선/해저면 경계조건에 기인한 와동류로 나타나는 것을 해양관측 기반 논문으로는 학계 처음으로 보고했다. 또한, 아중규모 에너지의 전환과 소진이 수직방향 혼합에 기인한다는 기존 학계의 이론을 보완해 수직방향의 부력에 의해 아중규모 에너지가 전환되고 소진됨을 세계 최초로 규명했다. 해양 관측기술과 해양유체의 컴퓨터 기반 시뮬레이션 기술의 발달과 함께 해양물리 분야의 아중규모 현상의 연구가 활발히 진행되는 가운데, 김성용 교수의 연구는 해양에너지가 소진되는 경로를 추적해 전지구 에너지 순환 및 항상성 연구에 큰 기여를 할 것으로 평가된다. 한편 이번 연구는 해양수산부산하 해양경찰청의 ‘Big Data 분석을 통한 해역별 해양사고 위험도 평가 및 대응지원시스템 구축 사업’의 지원을 받아 수행됐다.
2020.11.05
조회수 30912
공경철 교수팀, 13일 사이배슬론 2020 국제대회 참가
우리대학 기계공학과 공경철 교수 연구팀이 13일 오후 3시 대전 본원에서 열리는 사이배슬론(cybathlon) 2020 국제대회에 참가한다. 사이배슬론은 신체 일부가 불편한 장애인들이 로봇과 같은 생체 공학 보조 장치를 착용하고 겨루는 국제대회다. 지난 2016년 첫 대회가 개최된 후 올해 5월 스위스에서 2회 대회가 열릴 예정이었으나, 코로나19 팬데믹으로 인해 대회 일정이 9월에서 11월로 두 차례 변경되는 등 난항을 겪었다. 게다가, 최근 유럽 지역에 코로나19가 재확산 되어 영국과 프랑스, 독일 등 유럽 각국이 봉쇄령을 잇따라 발표하는 등 상황이 악화돼 대회 주최 측은 출전팀이 속한 각 국에 개별 경기장을 설치해 분산 개최하는 방식으로 대회 규정을 변경했다. 공 교수팀은 6개 장애물을 포함해 국제 규격에 맞춰 제작된 경기장을 KAIST 대전 본원에 설치하고 착용형(웨어러블) 로봇 종목에 출전한다. 주최 측은 각 경기 현장마다 심판을 파견해 분산 개최되는 대회의 공정성을 확보할 예정이다. 또한, 현장 기록 및 결과 공유를 위해 실시간 영상 전송 플랫폼을 도입하는 등 온라인으로 진행되는 대회에서 발생할 수 있는 각종 문제를 최소화하는 방안들을 마련했다. 6개의 종목으로 구성된 사이배슬론 2020 국제대회에는 25개국 소속의 60여 개 팀이 참여하며, 공 교수팀이 출전하는 착용형 로봇 종목에는 미국·스위스 등 8개 국을 대표해 출전한 12명의 선수가 진검승부를 펼친다. 착용형 로봇 종목은 하반신이 완전 마비된 장애인 선수가 두 다리를 감싸는 외골격형 로봇을 입은 상태로 평지 및 험지 걷기·앉았다 일어서기·계단 오르내리기·계단 및 측면 경사로 보행 등 6개의 장애물을 통과해 부여된 임무를 완수하는 경기다. 임무 완수의 정확도에 따라 점수가 주어지는데 10분 안에 얻은 점수를 합산해 선수의 최종 성적으로 기록한다. 총점이 같을 경우 짧은 시간 안에 경기를 완료한 선수가 우위에 오른다. 대회 당일에는 출전 선수 별로 총 3번의 도전 기회가 주어지며 이 중 가장 좋은 성적을 기준으로 상대 선수들과 경쟁하게 된다. 공 교수팀은 지난 2월 김병욱(47, 남)·이주현 (20, 여) 씨를 대표 선수로 선발해 최정수 교수(영남대학교 로봇기계학과)와 우한승 박사(KAIST 기계공학과 연구원)의 감독 아래 9개월 간 훈련을 진행해왔다. 현재, 두 선수 모두 6개의 장애물을 어려움 없이 통과해 임무를 완수하는 수준에 이르렀으며, 계단 위에서 중심을 잃는 등의 극한 상황을 가정해 이를 극복하는 훈련을 진행 중이다. 주최 측은 한국 시간으로 14일 오후 11시(스위스 시간 오후 3시)에 최종 순위 발표 및 메달 수여식을 진행하고 출전 팀 경기 영상을 사이배슬론 홈페이지(www.cybathlon.com)에 공개한다. 공 교수팀이 출전하는 착용형 외골격로봇 종목은 ▴뇌-기계 인터페이스 ▴전기자극 자전거 ▴로봇의수 ▴로봇의족 ▴전동 휠체어 등으로 구성된 사이배슬론의 여러 종목 중에서도 가장 큰 관심을 받는 분야다. 휠체어나 자전거 등 안정적인 보조 수단을 사용하는 다른 경기와는 달리 선수가 로봇을 착용하고 직접 보행해야하는 특성 때문이다. 약간의 기술적 오류만으로도 하반신이 마비된 선수가 넘어져 크게 다치는 위험 요소가 존재해 기술 난이도가 매우 높으며, 실존하는 가장 첨단의 착용형 로봇 기술이 총 집결돼 현실판 아이언맨 대회로도 불린다. 한편, 공 교수팀은 지난 1회 대회에서 동메달을 획득하는 등 착용형 로봇 분야에서 세계 최고로 손꼽히는 전문 연구팀으로 인정받고 있다. 이번 대회를 준비하기 위해 엔젤로보틱스, 세브란스 재활병원, 영남대학교, 재활공학연구소 등 각계 최고의 연구팀과 협력해 워크온슈트4를 개발했다. 연구 책임을 맡은 공경철 KAIST 기계공학과 교수는 "각국 연구팀들이 선의의 경쟁을 펼치며 장애를 극복하기 위한 기술을 개발하는 것이 대회의 본질인 만큼 코로나19에도 불구하고 대회가 개최되어 지난 4년간 발전시킨 기술을 공개하고 서로 배울 기회가 주어져 다행ˮ이라고 전했다. 공 교수는 이어 "그러나 대회의 성적은 기록으로 남기 때문에 좋은 결과를 얻기 위한 준비도 소홀히 하지 않았다ˮ고 강조했다. 지난 1회 대회에 이어 두 번째로 대회에 출전하는 김병욱 씨는 "국산 착용형 로봇 기술이 전 세계와 비교해 얼마나 우수한지 증명하는 좋은 기회가 될 것ˮ이라는 포부를 밝혔다. 또한, 이번 대회에 첫 출전하는 이주현 씨는 "이제는 남은 것은 자신과의 경쟁ˮ이라며, "장애를 로봇 기술로 이겨내는 장면을 통해 코로나19로 지친 전 국민들에게 희망을 전하고 싶다고ˮ고 각오를 드러냈다.
2020.11.04
조회수 29673
물방울로 코로나19 바이러스 잡는다
우리 대학 기계공학과 이승섭 교수와 정지훈 박사팀이 코로나19 바이러스 살균 기능이 있는 초미세 물방울의 대량 생성이 가능한 '정전분무' 기술을 개발했다고 14일 밝혔다. 이승섭 교수팀의 '정전분무(electrostatic atomization)' 기술로 만들어진 마이크로/나노 크기의 초미세 물방울 안에는 *'OH 래디컬'이 함유돼 있다. OH 래디컬은 불안정한 화학구조로 반응성이 매우 높고 강력한 산화력 때문에 세균과 바이러스 살균 기능을 보유하고 있지만 인체에는 전혀 해를 끼치지 않는 천연물질이다. ☞ OH 래디컬(hydroxyl radical): 거의 모든 오염물질의 살균·소독에 관여하며 화학적으로 분해하고 제거할 수 있는 가장 강력한 효과를 발휘하면서도 인체에는 무해한 물질. 현존하는 물질 중에서 OH 래디컬의 산화력(살균·소독·분해하는 능력)은 불소(F) 다음으로 강력하고 오존과 염소보다 강력하지만 불소·염소·오존처럼 독성이 있거나 인체에 유해하지는 않다. OH 래디컬은 높은 반응성으로 공기 중에서는 수명이 매우 짧아 효과적인 살균 기능에 어려움이 있으나, OH 래디컬을 물방울에 가두면 수명을 크게 늘릴 수가 있어 살균에 유용하게 이용할 수 있다. OH 래디컬을 함유하는 초미세 물방울은 일본 파나소닉 社의 나노이(nanoeTM) 기술이 세계적으로 가장 앞서있다. 다만, 나노이 기술은 공기 중의 수분을 차가운 금속 팁 위에 응결시켜 정전분무 하는 방식이어서 생성되는 초미세 물방울의 양이 매우 적고 인가전압이 높아 인체에 해로운 오존이 발생되는 단점이 있다. 일본 파나소닉은 자사의 나노이 기술로 만들어진 초미세 물방울이 코로나19 바이러스에 살균 효과가 있다는 실험 결과를 올 7월 말 발표한 바 있다. 이승섭 교수 연구팀은 세계 최초로 멤스(MEMS) 기술로 제작된 폴리머 재질의 초미세 노즐을 이용해 정전분무 하는 방식으로, 인가전압이 낮아 정전분무가 오존 발생 없이 안정적으로 구현된다. 또한 초미세 노즐 어레이를 이용해 외부 환경과는 무관하게 초미세 물방울을 대량으로 생성하는 데도 성공했다. 머리카락보다 가는 초미세 노즐은 피뢰침과 같이 높게 솟아있는 구조로 초미세 노즐의 주위는 마이크로 돌기로 소수성 처리가 돼 있다. 이승섭 교수팀은 지난 수년간 폴리머 초미세 노즐 개발과 물 정전분무 기술을 이용해 가습·탈취·미세먼지제거·항균 등과 같은 공기정화에 관한 연구를 수행해왔다. 이승섭 교수팀은 현재 초미세 물방울의 양산이 가능한 '폴리머 초미세 노즐 정전분무' 기술을 기반으로 코로나19 바이러스 살균용 공기정화기를 개발 중이다. 순수한 물을 이용한 살균 방법으로 인체에 해가 없고 친환경이라는 장점 때문에 향후 코로나19 방역에도 큰 도움을 줄 것으로 기대하고 있다. 한편 이승섭 교수팀의 폴리머 초미세 노즐을 이용한 물 정전분무 연구는 올 4월 국제학술지 '폴리머(Polymer)'에 소개된 바 있다. (논문명; Polymer micro-atomizer for water electrospray in the cone jet mode). 아울러 이 교수팀은 올 8월부터 KAIST 코로나 뉴딜사업의 지원을 받아 후속 연구를 진행 중이다.
2020.10.14
조회수 32691
물고기처럼 점액질 뿜어내는 선체로 선박 연비 높인다
우리 대학 기계공학과 성형진 교수가 이끄는 KAIST-POSTECH 공동연구팀이 미역, 미꾸라지 등 피부가 미끌미끌한 해초와 물고기의 점액질 분비 메커니즘에 착안해 선체의 표면 마찰력을 줄이는 방법을 고안해냈다. 그동안 표면에 골을 내 기름을 주입하는 등 여러 마찰력 저감 기술이 선을 보였으나 생체의 점액 분비 구조를 모방해 항력을 줄이는 구조를 제시한 것은 이번이 처음이다. 물살을 가르며 앞으로 나아가는 배는 물과의 마찰력을 이겨내기 위해 많은 에너지를 소비한다. 장거리 화물선은 운항 과정에서 유체 마찰로 잃어버리는 에너지만 해도 상당한 양에 이른다. 선박이 받는 전체 저항력의 60~70%가 물과 선체 사이의 마찰에서 비롯된다고 한다. 따라서 이 마찰력을 줄이면 그만큼 선박의 연료 소비량을 줄일 수 있다. 오늘날 세계 전체 운송물량의 약 90%는 해상운송이 맡고, 해운업이 전 세계 온실가스 배출량의 2.5%(연간 약 10억톤)를 배출하는 현실을 고려하면 선박 연료 소비 절감을 위한 신기술 기대감이 어느 때보다 높은 상황이다. 해초와 물고기에는 흐르는 물과의 마찰을 줄여주는 점액질을 분비하는 세포가 있다. 성형진 교수는 "포항의 방사광 가속기로 미꾸라지의 점액 분비 구조를 들여다본 결과, 아래는 넓고 위는 좁은 항아리 모양을 하고 있는 것을 확인했다"며 이런 구조가 모세관 현상을 일으켜 점액질을 끊임없이 분비해주는 것으로 보인다고 밝혔다. 모세관 현상이란 액체가 중력 등 외부 힘의 도움 없이 좁은 관을 따라 올라가는 현상을 말한다. 모세관 지름이 충분히 작을 때 액체의 표면장력(응집력)이 작용하면서 일어나는 현상이다. 나무에서 뿌리가 빨아들인 수분이 줄기를 거쳐 꼭대기의 잎까지 올라갈 수 있는 것이 이 모세관현상 덕분이다. 연구진은 미꾸라지의 점액 분비 시스템을 모방해 윤활유를 방출하는 항아리 형태의 미세구멍을 만들어 실험했다. 구멍의 바닥과 목 부분 비율을 여러가지로 바꿔가며 실험한 결과 윤활유가 지속적으로 방출되면서 물과의 마찰력이 줄어드는 것을 확인할 수 있었다. 구멍의 개방률(바닥 지름 대비 목 지름 비율)이 클수록 윤활유가 더 많이 방출되면서 선박의 표면을 따라 퍼져나갔다. 또 목 부분을 더 길쭉하게 늘려주면 윤활제가 표면에 조금 더 두텁게 퍼지는 효과가 있었다. 연구진은 실험 결과 마찰력이 약 18% 감소하는 것을 확인했다고 밝혔다. 마찰력이 줄어드는 만큼 선박의 연비는 좋아진다. 구멍 개방률 60%에서 마찰력 감소율이 가장 좋은 것으로 나타났다. 그러나 이 방법을 선박에 적용할 경우, 밖으로 배출된 윤활유가 바다를 오염시킬 수 있지 않을까? 성형진 교수는 이에 대해 생물의 점액 분비 조직처럼 윤활유도 아주 미세한 구멍을 통해 배출돼 표면을 덮기 때문에 생물에 해를 줄 만한 양이 바다로 흘러들어가지는 않는다고 말했다. 연구진이 실험에서 사용한 미세구멍의 지름은 불과 100나노미터(0.1마이크론 = 0.0001밀리미터) 정도였다. 연구진은 또 무해한 윤활유가 개발돼 있는 만큼 이런 윤활유를 쓰면 된다고 밝혔다. 연구진이 실험에서 사용한 윤활유는 듀폰의 크라이톡스(Krytox GPL 103)였다. 성형진 교수는 "한국에서도 홍합 추출물을 이용한 친환경 윤활유가 개발되고 있다"고 말했다. 이번 연구는 유체 역학에 바탕한 선체 표면의 윤활 원리와 최적 설계 구조를 밝힌 기초 연구다. 성 교수는 보도자료를 통해 "이번 연구를 통해 선체에 윤활 표면을 구현할 경우 얻을 수 있는 이점을 상당히 규명했다"며 연구 성과가 실제 선박에서도 구현될 수 있기를 기대했다. 이번 연구는 미국물리학회(AIP)가 발행하는 국제학술지 'Physics of Fluids' 에 '항력을 줄이는 윤활유 주입형 미끄럼표면(A lubricant-infused slip surface for drag reduction)'이란 제목으로 실렸다. NewScientist, Brietbart, MailOnline등 12개 세계영문과학잡지에 실렸으며, 한겨레신문의 미래창에 출간됐다. (2020.09.17.)
2020.10.05
조회수 25363
딥러닝 기반 실시간 기침 인식 카메라 개발
우리 대학 기계공학과 박용화 교수 연구팀이 ㈜에스엠 인스트루먼트와 공동으로 실시간으로 기침 소리를 인식하고 기침하는 사람의 위치를 이미지로 표시해주는 '기침 인식 카메라'를 개발했다고 3일 밝혔다. 작년 말부터 시작된 세계적 유행성 전염병인 코로나19가 최근 미국·중국·유럽 등 세계 각국에서 재확산되는 추세로 접어들면서 비접촉방식으로 전염병을 감지하는 기술에 대한 수요가 증가하고 있다. 코로나19의 대표적인 증상이 발열과 기침인데, 현재 발열은 열화상 카메라를 이용해 직접 접촉을 하지 않고도 체온을 쉽게 판별할 수 있다. 문제는 비접촉방식으로는 기침하는 사람의 증상을 쉽사리 파악하기 어렵다는 점이다. 박 교수 연구팀은 이런 문제를 해결하기 위해 기침 소리를 실시간으로 인식하는 딥러닝 기반의 기침 인식 모델을 개발했다. 또한 열화상 카메라와 같은 원리로 기침 소리와 기침하는 사람의 시각화를 위해 기침 인식 모델을 음향 카메라에 적용, 기침 소리와 기침하는 사람의 위치, 심지어 기침 횟수까지를 실시간으로 추적하고 기록이 가능한 '기침 인식 카메라'를 개발했다. 연구팀은 기침 인식 카메라가 사람이 밀집한 공공장소에서 전염병의 유행을 감지하거나 병원에서 환자의 상태를 상시 모니터링 가능한 의료용 장비로 활용될 것으로 기대하고 있다. 연구팀은 기침 인식 모델 개발을 위해 *합성 곱 신경망(convolutional neural network, CNN)을 기반으로 *지도학습(supervised learning)을 적용했다. 1초 길이 음향신호의 특징(feature)을 입력 신호로 받아, 1(기침) 또는 0(그 외)의 2진 신호를 출력하고 학습률의 최적화를 위해 일정 기간 학습률이 정체되면 학습률 값을 낮추도록 설정했다. 이어서 기침 인식 모델의 훈련 및 평가를 위해 구글과 유튜브 등에서 연구용으로 활발히 사용 중인 공개 음성데이터 세트인 `오디오세트(Audioset)'를 비롯해 `디맨드(DEMAND)'와 `이티에스아이(ETSI)', `티미트(TIMIT)' 등에서 데이터 세트를 수집했다. 이 중 `오디오세트'는 훈련 및 평가 데이터 세트 구성을 위해 사용했고 다른 데이터 세트의 경우 기침 인식 모델이 다양한 배경 소음을 학습할 수 있도록 데이터 증강(data augmentation)을 위한 배경 소음으로 사용했다. ☞ 합성 곱 신경망(convolutional neural network): 시각적 이미지를 분석하는 데 사용되는 인공신경망(생물학의 신경망에서 영감을 얻은 통계학적 학습 알고리즘)의 한 종류 ☞ 지도학습(Supervised Learning): 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning)의 한 방법 데이터 증강을 위해 배경 소음을 15%~75%의 비율로 `오디오세트'에 섞은 후, 다양한 거리에 적응할 수 있게 음량을 0.25~1.0배로 조정했다. 훈련 및 평가 데이터 세트는 증강된 데이터 세트를 9:1 비율로 나눠 구성했으며, 시험 데이터 세트는 따로 사무실에서 녹음한 것을 사용했다. 모델 최적화를 위해서는 '스펙트로그램(spectrogram)' 등 5개의 음향 특징과 7개의 최적화 기기(optimizer)를 사용해 학습을 진행하고 시험 데이터 세트의 정확도를 측정, 성능을 확인한 결과 87.4%의 시험 정확도를 얻을 수 있었다. 연구팀은 이어 학습된 기침 인식 모델을 소리를 수집하는 마이크로폰 어레이와 카메라 모듈로 구성되는 음향 카메라에 적용했다. 그 결과 수집된 데이터는 음원의 위치를 계산하는 빔 형성 과정을 거쳐 기침 인식 모델이 기침 소리로 인식할 경우 기침 소리가 난 위치에 기침 소리임을 나타내는 등고선과 라벨이 각각 표시된다. 박 교수팀은 마지막 단계로 기침 인식 카메라의 예비 테스트를 진행한 결과, 여러 잡음 환경에서도 기침 소리와 그 이외의 소리로 구분이 가능하며 기침하는 사람과 그 사람의 위치, 횟수 등을 실시간으로 추적해 현장에서의 적용 가능성을 확인했다. 이들은 추후 병원 등 실사용 환경에서 추가 학습이 이뤄진다면 정확도는 87.4%보다 더 높아질 것으로 기대하고 있다. 박용화 교수는 "코로나19가 지속적으로 전파되고 있는 상황에서 공공장소와 다수 밀집 시설에 기침 인식 카메라를 활용하면 전염병의 방역 및 조기 감지에 큰 도움이 될 것ˮ이라고 말했다. 박 교수는 이어 "특히 병실에 적용하면 환자의 상태를 24시간 기록해 치료에 활용할 수 있기 때문에 의료진의 수고를 줄이고 환자 상태를 더 정밀하게 파악할 수 있을 것ˮ 이라고 강조했다. 한편, 이번 연구는 에너지기술평가원(산업통상자원부)의 지원을 받아 수행됐다.
2020.08.03
조회수 31875
전자 신호의 오차를 1경분의 1초 수준으로 제어하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 초고속 펄스 레이저를 이용하여 전자 신호의 시간 오차를 1경분의 1초(100아토초=10-16초) 이하 수준까지 측정하고 제어하는 기술을 개발했다. 이 기술을 이용하면 매우 정밀한 시간 성능이 요구되는 차세대 데이터 변환기와 초고속 통신 및 집적회로의 성능을 획기적으로 높일 수 있을 것으로 기대된다. 현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 전자및정보공학과 정하연 교수팀과 공동연구로 수행된 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7월 22일자에 게재됐다. (논문명: Attosecond electronic timing with rising edges of photocurrent pulses) 초고속 펄스 레이저를 이용하면 기존의 기술들로 달성하기 어려웠던 시간 안정도를 얻을 수 있으며, 지난 십여년간 이러한 레이저로부터 하나의 마이크로파 주파수 성분을 걸러내어 낮은 위상잡음의 사인파 형태 전자 신호를 발생하는 연구가 세계적으로 활발하게 이루어졌다. 하지만 많은 디지털 및 정보통신 시스템들은 사인파가 아닌 펄스나 사각파 형태의 클럭 신호를 사용하는 경우가 많으며, 아직까지 초고속 레이저로부터 펄스 혹은 사각파 형태의 전자 클럭 신호를 생성하여 그 잡음 특성을 측정한 연구는 존재하지 않았다. 연구팀은 독자적으로 개발한 시간 오차 측정기술을 이용하여 초고속 레이저로부터 생성한 전류 펄스 신호의 시간 오차를 50아토초 분해능으로 측정할 수 있었다. 이를 통하여 전류 펄스의 상승에지(rising edge)에서의 시간 오차가 100아토초 수준으로 매우 작을 수 있음을 세계 최초로 규명했다. 연구팀은 또한 이러한 시간 오차가 광신호의 진폭 잡음이 시간 영역에서의 잡음으로 변환되는 과정에 의하여 제한된다는 것을 밝혔으며, 광신호의 진폭 잡음을 제어함으로써 전류펄스의 상승에지에서의 시간 오차를 64아토초 수준까지 제어할 수 있었다. 최근 전자 시스템과 데이터 속도가 급격하게 빨라짐에 따라 펄스나 사각파 형태의 전자 클럭 신호의 시간 오차를 줄이는 것이 매우 중요해지고 있으며, 고속 데이터 전송 및 데이터변환, 고속 칩간통신, 5G 통신 등에서는 이미 수십 펨토초(펨토초=10-15초, 1000조분이 1초) 수준의 시간 오차를 요구하고 있다. 이번 연구 결과는 초고속 레이저를 이용하면 이러한 최근의 요구보다도 훨씬 우수한 펨토초 이하의 100아토초(1경분의 1초) 수준까지도 전자 클럭 신호의 시간 오차를 제어할 수 있음을 의미한다. 따라서 이번 연구 결과를 이용하면 향후 초고속 레이저의 ICT 분야에서의 활용이 보다 본격화될 수 있을 것으로 기대된다. 김 교수는 “이미 이번 논문의 후속 결과로서 매우 작은 시간 오차를 가지는 광전류 펄스를 이용하여 전자칩에 클럭 신호를 주입하고 동작시키는 데에도 성공했다”고 밝히며, “초고속 레이저를 이용한 다양한 고성능 ICT 분야에서의 응용을 계속 연구할 계획”이라고 말했다. 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2020.07.24
조회수 25006
기계공학과 공경철 교수팀, 워크온슈트4 및 사이배슬론 2020 출전 선수 공개
우리대학 기계공학과 공경철 교수가 연세대학교 의과대학 세브란스병원 나동욱 교수와 공동 개발한 웨어러블 로봇인 '워크온슈트 4' 및 사이배슬론(Cybathlon) 2020' 대회에 출전할 선수를 15일 공개했다. 워크온슈트 4는 사이배슬론 2020에 출전하기 위해 새롭게 개발한 모델로 두 다리를 감싸는 외골격형 로봇이다. 모터를 이용한 힘으로 하반신을 전혀 사용하지 못하는 장애인들의 움직임을 보조할 수 있다. 일어나 걷는 등의 기본적인 동작은 물론 계단·오르막/내리막·옆경사·문 열기·험지 등 일상생활에서 자주 접하게 되는 장애물을 극복할 수 있도록 제작됐다. 이전까지 개발된 하반신 마비 장애인을 위한 웨어러블 로봇은 장시간 사용하기 어렵다는 한계가 존재했다. 하반신 기능을 소실해 근육 등 신체 기능이 퇴화한 장애인들이 로봇을 착용하고 움직이려면 수십 kg에 이르는 무게를 감당해야 했기 때문이다. 연구팀은 문제를 해결하기 위해 인체가 이루는 자연스러운 균형을 모사해 로봇의 무게중심을 설계하는 기술을 고안했다. 사용자 신체 각 부위에 정밀하게 밀착되는 착용부를 만든 뒤, 로봇 관절의 기준 위치를 조절해 무게중심을 정밀하게 맞춘 것이다. 또한, 착용자의 긴장 정도나 지면의 상태와 같은 외부 요인을 지능적으로 관측하고 제어하는 기술도 더했다. 로봇이 제공해야 하는 보조력은 사용하는 환경에 따라 크게 달라진다. 워크온슈트 4는 로봇이 착용자의 걸음을 30보 이내로 분석해 가장 적합한 보행패턴을 찾아 맞춤형으로 제공한다. 이를 통해, 하반신 마비 장애인들이 웨어러블 로봇을 착용하고 장시간 걷거나 설 수 있도록 월등하게 기능을 끌어올렸고 연속보행 시 1분당 40m 이상을 걸을 수 있게 된 성과도 거뒀다. 이는, 시간당 2~4km가량을 걷는 비장애인의 정상 보행 속도와 견줄만한 수준으로 그동안 전 세계적으로 보고된 하반신 완전 마비 장애인의 보행 기록 중 가장 빠른 속도다. 연구팀은 활발한 기술협력을 통해 일부 부품을 제외한 대부분의 구성 요소를 국산 기술로 완성했다. 로봇의 구조설계와 시스템 소프트웨어는 공경철·나동욱 교수가 공동 창업한 ㈜엔젤로보틱스에서 주도했다. 공학적 설계와 제어는 공경철 교수가, 보행 보조기로서의 구조와 대상자를 위한 필수 기능 등을 점검하는 생체역학 분야는 나동욱 교수가 분담해 맡았다. 개인맞춤형 탄소섬유 착용부는 재활공학연구소에서 연구를 진행했으며 로봇의 동작 생성과 디자인은 영남대학교 로봇기계공학과와 ㈜에스톡스가 각각 담당했다. 한편, 우리나라를 대표해 올해 개최예정인 `사이배슬론 2020'에 출전할 선수들은 지난 2월 KAIST에서 열린 선발전을 통해 결정됐다. 앉고 서서 물컵 정리하기·지그재그 장애물 통과·험지 보행·옆경사 보행 등 실제 대회에서 수행하게 될 미션이 선발전 평가항목으로 채택됐는데 작년 9월부터 출전을 준비해온 7명의 후보 선수 중 4명이 참가해 경기를 치렀다. 그 결과, 각각 2분 24초와 3분 35초의 기록으로 4개의 미션을 완수한 김병욱 씨(남, 46세)와 이주현 씨(여, 19세)가 국제대회에 출전할 최종 선수로 선발됐다. 현재 워크온슈트 4의 로봇기술은 선발된 두 선수의 개별적인 특성에 맞게 최적화되었으며, 두 선수 모두 6개의 모든 미션을 5분대에 통과할 정도로 기록이 향상되었다. 지금까지는 미국팀과 스위스팀이 4개의 미션을 6분대에 수행하는 기록을 공개했으며, 그 외 사이배슬론 참가팀은 모든 미션을 완벽하게 수행하지 못하는 단계에 머물러 있다. 선발전 1위에 오른 김병욱 씨는 1998년 뺑소니 사고로 장애를 얻은 뒤 2015년 공 교수 연구팀에 합류했다. 2016년 스위스에서 열린 제1회 사이배슬론 대회에서 워크온슈트의 초기모델을 착용하고 동메달을 딴 주인공으로 "우리나라의 웨어러블 로봇기술이 세계 최고 수준임을 직접 보여줄 것ˮ이라는 포부를 밝혔다. 2위에 오른 이주현 씨는 고등학교 3학년에 재학 중이던 작년 불의의 교통사고로 하반신이 마비됐다. 같은 해 6월 연구팀에 합류해 사이배슬론 2020 출전을 위한 훈련과 수능 시험을 준비를 병행했으며, 올해 초 최종 선수 선발 및 이화여대 정치외교학과 합격의 영광을 동시에 안았다. 공경철 KAIST 기계공학과 교수는 "지난 대회 이후 4년 동안 모든 연구원과 협력 기관들이 하나가 되어 수준 높은 기술을 개발할 수 있었고 선수들과도 큰 어려움 없이 훈련했다ˮ고 전했다. 이어, "다가올 국제대회는 워크온슈트 4의 기술적 우월성을 전 세계에 증명하는 중요한 무대가 될 것ˮ이라며 강한 자신감을 보였다.
2020.06.15
조회수 22012
로봇 손의 미끄럼 막아주는 인공 피부 개발
우리대학 기계공학과 박형순, 김택수 교수 연구팀이 사람 손바닥 피부의 기계적 특성을 모사, 로봇 손의 조작성능을 높여줄 인공피부를 개발했다. 의수나 산업용 집게, 산업용 로봇손 등에 부착하는 것만으로 물체 조작 능력이나 작업능력을 향상시킬 유용한 말단 인터페이스가 될 수 있을지 기대된다. 기존 기능성 인공피부가 주로 미관상 기능이나 감각기능 재현에 초점을 두었던데 반해, 이번에 개발된 인공피부는 구조 그 자체로 조작기능 향상에 기여하기에 복잡한 제어알고리즘이나 추가적인 동작 없이 간단히 부착하는 것만으로 조작성능 향상을 도울 수 있다. 연구팀은 손바닥 피부를 물리적 장벽이자 다양한 감각을 수용하는 기관으로만 보지 않고, 임의의 모양의 물체에 밀착되도록 변형되면서 물체를 안정적으로 고정한다는 점에서 손의 조작기능에 영향을 미치는 중요한 변수로 주목했다. 이에 손바닥 피부를 겉 피부층, 피하지방층, 근육층으로 구조화하여 각 특성을 분석, 피하 지방층의 비대칭적인 물리적 특성이 기능적 장점을 만들어 내는 핵심요소임을 알아냈다. 부드러운 지방조직과 질긴 섬유질 조직이 복합되어 누름에 유연하면서도 비틀림이나 당김에 의한 변형에 대해서는 강인하게 버틸 수 있다는 것이다. 이를 토대로 손바닥처럼 말랑한 다공성 라텍스 및 실리콘을 이용해 손바닥 피부와 동일한 비선형적·비대칭적 물리적 특성을 지니는 3중층 인공피부를 제작했다. 기공들이 누름에 대해서는 쉽게 압축되어 물체의 형상에 맞게 쉽게 변형되도록 하는 한편, 기공 사이사이 질긴 라텍스 격벽이 비틀림이나 당김에 강하게 저항함으로써 대상 물체를 견고하게 잡을 수 있도록 한 것이다. 실제 이렇게 만들어진 3중층 인공피부를 부착한 로봇 손은 기존 실리콘 소재의 단일층 인공피부를 부착한 로봇 손 대비 물체를 고정할 수 있는 작업 안정성과 물체를 움직일 수 있는 조작성이 30% 향상된 것으로 나타났다. 연구팀은 향후 나사처럼 작은 물체나 계란처럼 쉽게 깨질 수 있는 매끄러운 물체 등 조작대상의 크기나 단단함, 표면특성을 고려하여 인공피부의 질감, 두께, 형상을 조절하는 등 용도에 맞는 최적의 피부구조를 설계하는 방안에 대한 연구를 지속할 계획이다. 이반 연구는 과학기술정보통신부와 한국연구재단이 추진하는 바이오닉암메카트로 닉스융합연구사업 및 선도연구센터사업의 지원으로 수행되었으며, 신소재 분야 국제학술지‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 속표지 논문으로 5월 8일 선공개 되었다.
2020.06.01
조회수 13158
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 25