본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80
최신순
조회순
‘슝’ 스스로 움직이는 생명체 세포로봇 개발
현재 전 세계적으로 마이크로 및 나노급의 작은 입자 기반의 비생명체 자가 추진 로봇 기술은 활발하게 연구되고 있는 반면에, 세포와 같은 생명체 구성 요소를 직접 활용한 세포로봇 연구는 아직 초기 단계에 머물러 있다. 우리 연구진이 세포 기반 시스템의 자율적으로 이동하는 세포로봇을 개발하는데 성공했다. 향후 정밀 약물 전달이나 차세대 세포 기반 치료법의 원천기술로 활용될 수 있을 것으로 기대된다. 우리 대학 화학과 최인성 교수 연구팀이 외부 동력 장치나 복잡한 기계 구조 없이, 생체 부산물인 ‘요소(urea)’*를 연료로 사용하는 자가 추진 세포로봇을 개발했다고 30일 밝혔다. *요소(urea): 사람을 포함한 대부분의 동물 체내에서 단백질을 분해하면서 생기는 노폐물로 생명체 안에서는 단백질 대사 과정에서 암모니아를 독성이 낮은 형태로 전환하여 배출하는 중요한 역할을 함 연구팀이 구현한 세포로봇은 방향성을 갖고 스스로 이동할 수 있으며, 원하는 물질을 운반하거나 주변 환경 제어 기능을 탑재할 수 있는 다기능성 플랫폼으로 설계됐다. 연구팀은 쉽고 안정적으로 얻을 수 있는 생명체이면서 부산물로 생성된 에탄올 활용 가능성이 있고, 인공적인 복잡한 외부 장치 없이 생명체 스스로 만들어내는 물질을 활용할 수 있는 ‘효모’에 주목했다. 제빵과 막걸리 발효에 사용되는 효모(이스트, yeast)는 포도당을 분해해 에너지를 얻는 대사 과정에서 알코올(에탄올)을 부산물로 생성하는데, 연구팀은 이때 생성된 에탄올을 활용해 효모 표면에 생체친화적인 방식으로 나노 껍질을 형성할 수 있는 원천기술을 개발했다. 이를 위해, 알코올산화효소(AOx)와 겨자무과산화효소(HRP)로 구성된 효소 시스템을 도입했다. 이 효소 시스템은 효모의 포도당 분해 반응과 연계된 연쇄적 효소 반응을 유도하며, 그 결과로 멜라닌 계열의 나노껍질이 효모 표면에 형성된다. 특히, 이번에 개발된 화학적 방법론은 효모가 성장하고 분열하는 동안에도 나노껍질 형성이 지속적으로 일어나도록 설계돼 있어서, 세포의 형태 변화에 따라 비대칭적인 세포-껍질 구조가 자연스럽게 생성된다. 예를 들어, 분열 중인 세포 전체를 감싸는 껍질이 형성되기도 하지만, 모세포 부분에는 껍질이 생성되고 딸세포 부분에는 형성되지 않는 구조도 만들어진다. 연구팀은 세포를 감싸는 나노껍질에 우레아제(urease)*를 부착하고 세포로봇의 움직임을 관찰했다. 우레아제는 요소를 분해하는 촉매 역할을 하며 세포로봇이 스스로 움직일 수 있도록 구동력을 만들어내는 핵심 역할을 수행하며 비대칭 구조를 가진 세포로봇이 보다 명확한 방향성을 갖고 자가 추진하는 현상을 확인했다. *우레아제(urease): 요소를 분해해 암모니아와 이산화탄소를 만드는 효소 이번에 개발된 세포로봇은 세포 주위에 존재하는 물질만으로 자가 추진이 가능하고, 자석이나 레이저 등 복잡한 외부 제어 장치에 의존하지 않아 구동 메커니즘이 훨씬 간단하고 생체친화적이다. 또한, 나노껍질에 다양한 효소를 화학적으로 접합할 수 있어, 다양한 생체 물질을 연료로 활용하는 세포로봇의 확장 개발도 가능하다. 이번 연구의 제1 저자인 화학과 김나영 박사과정은 “자가 추진 세포로봇은 스스로 환경을 감지하고 반응하며 움직이는 능력을 지닌 새로운 개념의 플랫폼으로, 향후 암세포 표적 치료나 정밀 약물전달시스템 등에서 중요한 역할을 할 수 있을 것”이라고 말했다. 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’에 지난 6월 25일 오후 2시(미국 동부시각) 온라인판에 게재됐다. ※ 논문명 : Autonomous Chemo-Metabolic Construction of Anisotropic Cell-in-Shell Nanobiohybrids in Enzyme-Powered Cell Microrobots; 국문 번역 : 효소 구동 세포 마이크로로봇 구축에서의 자율적인 화학-대사 반응을 통해 형성된 비등방성 세포내껍질 나노바이오하이브리드 ※ DOI: https://doi.org/10.1126/sciadv.adu5451 한편, 이번 연구는 한국연구재단 기초연구사업 중견연구과제(제목: 세포대사 연계형 단일세포나노피포화)의 지원을 받아 수행됐다.
2025.06.30
조회수 334
폐타이어를 고무·나일론 원료로 전환 성공
전 세계적으로 매년 수십억 개의 타이어가 폐기되며, 이는 심각한 환경오염의 주요 원인 중 하나로 지목되고 있다. 우리 연구진이 폐타이어를 고무나 나일론 섬유 원료로 쓰이는 고부가가치 화학 원료인 고순도의 고리형 알켄으로 선택적 전환하는 데 성공했다. 이는 폐타이어 재활용 분야의 새로운 전환점으로 평가된다. 우리 대학 화학과 홍순혁 교수 연구팀이 이중 촉매 기반 연속 반응 시스템을 개발해 폐타이어 문제를 효과적으로 해결했다고 26일 밝혔다. 폐타이어는 합성고무와 천연고무의 복합체로 구성되며, 실리카, 카본블랙, 산화방지제 등의 첨가제를 포함해 물리적 강도와 내구성이 극대화되어 있다. 특히 가황 공정을 통해 고무 사슬 간의 가교가 형성돼 열과 압력에 강한 구조를 갖게 되는데, 이는 폐타이어의 화학적 재활용을 어렵게 만드는 주요 원인 중 하나다. 그동안 폐타이어의 재활용은 주로 열분해 방식이나 물리적 분쇄 재활용에 의존해 왔다. 열분해 방식은 350~800°C의 고온 환경에서 고분자 사슬을 분해해 연료유로 전환하는 기술이나, 높은 에너지 소비, 낮은 선택성, 그리고 저품질의 탄화수소 혼합물 생성이라는 한계가 명확히 존재한다. 연구팀은 이런 문제를 해결하고자 두 가지 촉매를 활용해 폐고무를 유용한 화학물질로 바꾸는 방법을 개발하였다. 첫 번째 촉매는 고무 분자 안의 결합 구조를 바꿔 분해가 잘 되도록 돕고, 두 번째 촉매는 고리를 닫는 반응을 통해 고리 모양의 화합물을 만들어낸다. 이 과정은 최대 92%의 높은 선택성과 82%의 수율을 보여준다. 만들어진 고리형 펜텐은 다시 고무로 재활용할 수 있고, 고리형 헥센은 나일론 섬유의 원료로 쓰이는 등 산업적으로 매우 가치가 높다. 연구팀은 개발한 시스템을 실제 폐기물로 버려진 폐타이어에 적용해, 고순도의 고리형 알켄으로 선택적 전환하는 데 성공했다. 이는 기존 열분해 방식과 달리 저온의 정밀 촉매 반응을 통해 고부가가치 화학 원료를 생산할 수 있다는 점에서 폐타이어 재활용 분야의 새로운 전환점으로 평가된다. 또한, 이번 기술은 다양한 종류의 합성고무와 폐고무에 폭넓게 적용될 수 있어, 자원 순환형 경제 실현에 기여할 수 있는 핵심 원천기술로 주목받고 있다. 홍순혁 교수는 “이번 연구는 폐타이어의 화학적 재활용에 대한 혁신적인 해법을 제시한 것이며, 경제성을 높이기 위해 차세대 고효율 촉매 개발, 상용화를 위한 기반을 마련해 나갈 예정이다”며, “기초화학을 통해 폐플라스틱 문제 해결에 기여하는 것이 목표”라고 밝혔다. 우리 대학 화학과 박범순, 조경일, 최경민 연구원이 참여한 이번 연구는 한국연구재단의 지원으로 수행됐으며, 국제 저명 학술지 ‘Chem’에 6월 18일 자로 온라인 게재됐다. ※논문명: Catalytic and Selective Chemical Recycling of Post-Consumer Rubbers into Cycloalkenes ※DOI: 10.1016/j.chempr.2025.102625
2025.06.26
조회수 537
6만 편 논문 대신할 ‘한번의 실험’으로 약물 저해효과 정확 예측
기존 신약 개발에서는 수많은 농도 조건에서 반복 실험을 거쳐 약물 간 상호작용을 분석하고, 저해상수를 추정하는 방식이 사용돼 왔다. 이 방법은 지금까지 6만 편 이상의 논문에 활용될 만큼 널리 쓰였다. 그런데 최근, 학부생이 제 1저자로 참여한 국내 연구진이 단 하나의 저해제 농도만으로 저해상수를 정확히 추정할 수 있는 획기적인 분석법을 제안해 주목을 받고 있다. 우리 대학 수리과학과 김재경 교수 연구팀(IBS 의생명 수학 그룹 CI)이 충남대(총장 김정겸) 약대 김상겸 교수팀과 기초과학연구원(원장 노도영, IBS) 의생명수학그룹과 공동연구를 통해, 단 하나의 실험으로 약물 저해 효과*를 예측할 수 있다고 26일 밝혔다. *약물 저해 효과: 한 약물이 특정 효소의 작용을 억제함으로써 다른 약물의 대사(분해 및 처리 과정) 또는 생리학적 효과에 영향을 주는 현상 공동 연구팀은 수학적 모델링과 오차 지형 분석을 통해 정확도 향상에 기여하지 않는 저해제 농도를 제거하고, 단 하나의 농도만으로도 저해상수를 정확하게 추정할 수 있는 새로운 분석법 ‘50-BOA’를 제안했다. 이 기법을 실제 실험 데이터에 적용한 결과, 기존보다 75% 이상 실험 효율이 향상됐으며, 정확도 역시 개선됐다. 이번 연구는 반복 실험에 따른 자원 소모를 줄이고 해석의 편차를 최소화함으로써, 신약 개발 과정의 효율성을 높일 수 있는 새로운 접근법을 제시했다는 점에서 큰 의의가 있다. 또한, 수학적 접근이 생명과학 실험 설계를 어떻게 혁신할 수 있는지를 보여주는 대표적인 성과로 평가된다. 저해상수는 약물 효과뿐 아니라, 병용 투여 시 발생할 수 있는 약물상호작용을 예측하고 방지하는 데 핵심적인 지표로 활용된다. 실제로 미국 식품의약국(FDA)은 신약 개발 과정에서 약물상호작용의 가능성을 예측하기 위해 저해상수를 포함한 효소의 저해 특성을 사전에 평가할 것을 권고하고 있다. 전통적으로 저해상수는 다양한 기질 및 저해제 농도에서 측정된 대사 속도 데이터에 수학 모델을 적합해 추정해왔다. 그러나 이러한 방식에도 불구하고, 동일한 기질-저해제 조합에 대해 연구마다 추정값이 10배 이상 차이나는 사례들이 보고돼, 신약 개발 과정에서 약물의 효과와 부작용을 정확히 예측하는 데 어려움이 있었다. 연구팀은 저해상수 추정 과정을 수학적으로 분석한 결과, 기존 방식에서 활용되는 데이터의 절반 이상이 실제 추정에 불필요하거나, 오히려 왜곡을 초래할 수 있음을 밝혀냈다. 즉, 저해제 농도를 다양하게 사용하는 기존 방식보다, 충분히 높은 저해제 농도 하나에서 추정한 결과가 더 정확하고 효율적일 수 있다는 점을 규명한 것이다. 나아가 저해제 농도와 저해상수 간의 관계를 나타내는 식을 정칙화로 추가해, 정확도를 더욱 높인 새로운 분석법, ‘50-BOA’를 개발했다. 50-BOA는 단 하나의 저해제 농도만으로도 저해상수를 정확하게 추정할 수 있어, 실험 횟수를 크게 줄이면서도 오히려 정확도를 높인 획기적인 기법이다. 연구팀은 이 방법을 실제 약물 데이터에 적용해, 기존보다 75% 이상 적은 데이터만으로도 저해상수를 정확하게 추정해냈다. 또한, 누구나 쉽게 활용할 수 있도록 엑셀 기반의 사용자 친화적인 분석 소프트웨어도 개발자 플랫폼인 깃허브(https://github.com/Mathbiomed/50-BOA)에 함께 공개했다. 충남대 김상겸 교수는 “이번 연구는 수십 년간 정형화된 약물 실험 설계를 근본적으로 재검토하게 만들었다”며, “단순한 실험 효율 향상을 넘어, 약효와 부작용 예측의 정확도를 높일 수 있는 새로운 표준이 될 것으로 기대한다”고 밝혔다. 또한, 우리 대학 김재경 교수는 “수학이 실험 설계를 바꾸고, 생명과학 분야의 연구 효율성과 재현성을 근본적으로 높일 수 있음을 보여주는 대표적 사례다”고 밝혔다. 이번 연구 논문은 우리 대학 융합인재학부 장형준 학사과정과 수리과학과 송윤민 박사가 공동 제1 저자로 참여하였고 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 2025년 6월 5일 자에 게재됐다. ※ 논문명 : Optimizing enzyme inhibition analysis: precise estimation with a single inhibitor concentration ※ 저자 정보 : 장형준 (KAIST 융합인재학부, 공동 제1 저자), 송윤민 (IBS 의생명수학그룹 (전 KAIST 수리과학과 소속), 공동 제1저자), 전장수(충남대 약대, 연구교수, 공동저자), 윤휘열(충남대 약대, 교수, 공동저자), 김상겸(충남대 약대, 교수, 교신저자), 김재경 (KAIST 수리과학과, 교신저자) ※ DOI: https://doi.org/10.1038/s41467-025-60468-z 한편 이번 연구는 한국연구재단, 기초과학연구원, KAIST의 지원을 받아 수행됐다.
2025.06.16
조회수 1803
21개 화학반응 동시 분석..AI 신약 개발 판 바꾼다
임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일 밝혔다. 이번 연구는 다수의 반응물을 동시에 투입해 진행하는 비대칭 촉매 반응을 고해상도 불소 핵자기공명분광기(19F NMR)를 활용해 정밀 분석한 세계 최초의 기술로, 신약 개발 및 촉매 최적화 등 다양한 분야에 획기적인 기여가 기대된다. * 인공지능 기반 자율합성: 인공지능(AI)을 활용해 화학 물질 합성 과정을 자동화하고 최적화하는 첨단 기술로, 미래 실험실의 자동화 및 지능형 연구 환경을 구현할 핵심 요소로 주목받고 있다. AI가 실험 조건을 예측·조절하고 결과를 해석해 후속 실험을 스스로 설계함으로써 반복 실험 수행 시 인간 개입을 최소화해 연구 효율성과 혁신성을 크게 높인다. 현재 자율합성 시스템은 반응 설계부터 수행까지는 자동화가 가능하지만, 반응 결과 분석은 전통적 장비를 활용한 개별 처리 방식에 의존하고 있어 속도 저하와 병목 현상이 발생하며 고속 반복 실험에는 적합하지 않다는 문제점이 제기돼 왔다. 또한, 1990년대에 제안된 다기질 동시 스크리닝 기법은 반응 분석의 효율을 극대화할 전략으로 주목받았지만, 기존 크로마토그래피 기반 분석법의 한계로 인해 적용 가능한 기질 수가 제한적이었다. 특히 원하는 광학 이성질체만 선택하여 합성하는 비대칭 합성 반응에서는 10종 이상의 기질을 동시에 분석하는 것이 불가능에 가까웠다. 이러한 한계를 극복하기 위해, 연구팀은 다수의 반응물을 하나의 반응 용기에 투입하여 동시에 비대칭 촉매 반응을 수행한 뒤 불소 작용기를 생성물에 도입하고, 자체 개발한 카이랄 코발트 시약을 적용해 모든 광학 이성질체를 명확하게 정량 분석할 수 있는 불소 핵자기공명분광기(19F NMR) 기반 다기질 동시 스크리닝 기술을 구현했다. 연구팀은 19F NMR의 우수한 분해능과 민감도를 활용해, 21종 기질의 비대칭 합성 반응을 단일 반응 용기에서 동시에 수행하고 생성물의 수율과 광학 이성질체 비율을 별도의 분리 과정 없이 정량 측정하는 데 성공했다. 김현우 교수는 “여러 기질을 한 반응기에 넣고 비대칭 합성 반응을 동시에 수행하는 것은 누구나 할 수 있지만, 생성물 전체를 정확하게 분석하는 것은 지금까지 풀기 어려운 과제였다”며, “세계 최고 수준의 다기질 스크리닝 분석 기술을 구현함으로써 AI 기반 자율합성 플랫폼의 분석 역량 향상에 크게 기여할 수 있을 것으로 기대된다”고 말했다. 이어 “이번 연구는 신약 개발에 필수적인 비대칭 촉매 반응의 효율성과 선택성을 신속히 검증할 수 있는 기술로, AI 기반 자율화 연구의 핵심 분석 도구로 활용될 전망이다”라고 밝혔다. 이번 연구에는 우리 대학 화학과 김동훈 석박통합과정 학생(제1 저자), 최경선 석박통합과정 학생(제2 저자) 가 참여했으며, 화학 분야 세계적 권위의 국제 학술지 미국화학회지(Journal of the American Chemical Society) 에 2025년 5월 27일 자 온라인 게재됐다. ※ 논문명: One-pot Multisubstrate Screening for Asymmetric Catalysis Enabled by 19F NMR-based Simultaneous Chiral Analysis ※ DOI: 10.1021/jacs.5c03446 이번 연구는 한국연구재단 중견연구자 지원사업, 비대칭 촉매반응 디자인센터, KAIST KC30 프로젝트의 지원을 받아 수행됐다.
2025.06.16
조회수 1531
한순규 교수팀, 한국 최초 신렛(Synlett) 최우수논문상 수상
우리 대학 화학과 한순규 교수 연구팀이 독일의 유서 깊은 학술 출판사 티메(Thieme)가 수여하는 2024 신렛(Synlett) 최우수 논문상(Synlett Best Paper Award 2024)을 수상했다고 30일 밝혔다. 티메는 매해 유기화학 분야 SCI 저널인 신렛에 출판된 논문 중 최우수 논문 1편을 선정해 최우수 논문상을 수여해왔다. 한순규 교수 연구팀은 지난 10여 년간 천연물 합성 연구에 집중하며 다양한 생리활성을 가지는 이차대사물의 효율적이고 독창적인 합성법을 개발했다. 특히 광대싸리나무에서 유래하는 초복잡 세큐리네가 천연물 합성분야에서는 세계적인 선도그룹으로 괄목할 만한 연구성과를 성취했다. 수상 논문에서 한순규 교수 연구팀은 세계 최초로 자연에서 극소량만 얻을 수 있는 희귀한 천연물인 4α-하이드록시알로세큐리닌과 세큐린진 F를 시중에 쉽게 구할 수 있는 시작 물질로부터 인공적으로 처음부터 끝까지 만들어내는 데 성공했다. 세큐리네가 천연물은 뇌의 구조와 기능을 변화시키는 신경가소성을 유도해 알츠하이머, 우울증, 파킨슨병 같은 뇌 질환 치료제 후보로 주목받고 있다. 한 교수 연구팀은 식물에서의 추출을 통해서는 극히 소량만 확보할 수 있는 해당 천연물을 효율적으로 합성할 수 있는 원천기술을 개발하는데 성공했다. 신렛(Synlett) 편집장 데바브라타 마이티 교수(Debabrata Maiti, 봄베이 인도공대, IIT Bombay)는 ”이 논문은 뇌질환 치료 후보물질로 주목받는 천연물인 4α-하이드록시알로세큐리닌과 시큐리닌 F의 세계 최초 인공적으로 합성한 연구로 그 중요성을 높이 평가해 ‘최우수 논문’으로 선정했다”고 밝혔다. 이어 “이번 연구는 천연 세큐리네가 화합물이 향후 어떤 생체 표적과 작용하는지를 규명하는데 기여하거나, 차세대 정밀 치료제 개발에도 활용될 것으로 기대된다”고 전했다. 한순규 교수는 “본 상의 이전 수상자인 세계 유기합성화학 분야의 슈퍼스타인 필 바란(Phil Baran, 2019)이나 일본 나고야 대학 나노카본 및 분자기반 재료화학분야의 개척자 이타미 켄이치로(Kenichiro Itami, 2016) 등은 현재 유기화학 학계를 이끌고 있는 세계적인 석학이다”라며, “본 수상이 매우 영광이며 앞으로 더욱 막중한 학자적 책임감을 가지고 인류에 도움이 되는 연구를 진행하겠다”고 수상 소감을 밝혔다. 수상 논문은 연구수행 시점 기준으로 제1 저자 박상빈 석박사통합과정 대학원생과 제2, 3 저자 김도영, 양우일 학부생이 함께 진행하였고 신렛(Synlett)에 2023년 6월 23일에 게재됐다. ※ 논문명: Total Synthesis of 4α-Hydroxyallosecurinine and Securingine F, Securinega Alkaloids with a C4-Hydroxyl Handle for Biofunctional Derivatizations ※ DOI: 10.1055/a-2047-9680 신렛 최우수 논문상 수상자에게는 3,000유로의 상금이 주어지며, 한순규 교수는 6월 12일 티메 사의 화학세미나인 티메 케미나(Thieme Cheminar)를 통해 온라인으로 수상 기념 강연을 진행할 예정이다.
2025.05.30
조회수 1048
암 조직 ‘3D·가상염색’ 혁신기술로 절개 없이 관찰 가능
기존에 암 조직을 얇게 절단하여 염색한 뒤 관찰하던 전통 방식에서 벗어나, 우리 대학과 국제공동연구진이 첨단 광학 기술을 활용해 절개없이 암 조직의 3차원 구조를 인공지능 기반 딥러닝 알고리즘을 접목시켜 실제처럼 가상 염색 영상으로 구현하는 기술을 성공하여 향후 차세대 비침습 병리 진단의 혁신을 기대할 수 있게 됐다. 물리학과 박용근 교수 연구팀이 연세대 강남세브란스병원 신수진 교수팀, 미국 메이오클리닉(Mayo Clinic) 황태현 교수팀, 토모큐브 인공지능 연구팀과의 공동연구를 통해, 별도의 염색 없이도 암 조직의 3차원 구조를 생생하게 보여줄 수 있는 혁신적인 기술을 개발했다고 26일 밝혔다. 200여년간 사용되어 온 기존 병리학에서는 암 조직을 현미경으로 관찰하던 방식은 3차원으로 이루어진 암 조직의 특정 단면만을 보여주기 때문에, 세포간의 입체적 연결 구조나 공간적 배치를 파악하는데 한계가 있었다. 이에 연구팀은‘홀로토모그래피(Holotomography, HT)’라는 첨단 광학 기술을 활용해 조직의 3차원 굴절률 정보를 측정하고, 여기에 인공지능 기반 딥러닝 알고리즘을 접목시켜 마치 가상의 염색(H&E)* 이미지 생성하는데 성공했다. * H&E(Hematoxylin & Eosin): 병리 조직을 관찰할 때 가장 널리 사용되는 염색법으로, 세포의 핵은 헤마톡실린(Hematoxylin)으로 파란색, 세포질은 에오신(Eosin)으로 분홍색으로 염색된다. 연구팀은 이 기술이 생성한 영상이 실제 염색된 조직 영상과 매우 유사하다는 점을 정량적으로 입증했으며, 다양한 장기와 조직에서도 일관된 성능을 보여줌으로써 차세대 병리 분석 도구로서의 범용성과 신뢰성을 입증했다. 또한, 토모큐브사의 홀로토모그래피 장비를 활용해 한국과 미국의 병원 및 연구기관과 공동으로 기술 실현 가능성을 검증함으로써, 이 기술이 실제 병리 연구 현장에 본격적으로 도입될 수 있음을 보여주었다. 박용근 교수는 “이번 연구는 병리학의 분석 단위를 2차원에서 3차원으로 확장한 매우 의미 있는 성과”라며, “앞으로 미세 종양 환경 내에서 암 종양의 경계나 주변 변역 세포들의 공간 분포를 분석할 수 있는 등 다양한 생의학 연구와 임상 진단에 널리 활용될 수 있을 것”이라고 전했다. 이번 연구는 박주연 석박사통합과정 학생이 제1 저자로 참여했으며, 세계적 학술지 네이처 커뮤니케이션즈(Nature Communications)에 5월 22일자로 온라인 게재되었다. (논문명: Revealing 3D microanatomical structures of unlabeled thick cancer tissues using holotomography and virtual H&E staining. https://doi.org/10.1038/s41467-025-59820-0) 본 연구는 한국연구재단 리더연구사업, 한국산업기술진흥원의 글로벌산업기술협력센터사업, 보건산업진흥원의 지원을 받았다.
2025.05.26
조회수 1807
마그논 3차원 제어 세계 첫 규명- 뉴로모픽·양자기술 게임체인저로
전류없이 자석으로 정보 전달이 가능한 마그논(스핀파)으로 처리하는 마그논 홀 효과는 지금까지 2차원 평면에서만 가능하다고 알려져 있는데 그 한계를 뛰어넘는다면 어떨까? 마그논이 3차원 공간에서 활용가능하다면 입체적 회로 등 자유로운 설계부터 인간의 뇌 정보와 같이 차세대 뉴로모픽(뇌 모사형) 연산 구조 등 다양한 분야에서 활용될 수 있다. KAIST와 국제공동연구진은 기존에 마그논 개념을 뛰어넘어, 3차원 공간에서도 자유롭고 복잡하게 움직일 수 있다는 3차원 마그논 홀 효과를 세계 최초로 예측했다. 우리 대학 물리학과 김세권 교수가 독일 마인츠 대학의 리카르도 자르주엘라 박사와 공동연구를 통해, 복잡한 자석 구조(쩔쩔맴 자성체, topologically textured frustrated magnets) 내에서 마그논(스핀파)과 솔리톤(스핀들의 소용돌이)의 상호작용이 단순하지 않고 복잡하게 설명된다는 사실을 세계 최초로 밝혀냈다. 전자의 움직임처럼 정보를 전달할 수 있는 마그논(스핀 파동)은 전류를 쓰지 않고 정보를 전달해 열이 나지 않는 차세대 정보 처리 기술로 주목받고 있다. 지금까지의 마그논 연구는 스핀들이 한 방향으로 가지런히 정렬된 단순한 자석에서만 이루어졌고 이를 설명하는 수학도 비교적 단순한 ‘가환(Abelian) 게이지 이론’이었다. 연구팀은 쩔쩔맴 자성체와 같은 복잡한 스핀 구조에서는 마그논이 여러 방향에서 복잡하게 상호작용하고 얽히며 이 움직임은 기존보다 한 차원 높은 수학인 ‘비가환(non-Abelian) 게이지 이론’을 적용했고, 이를 세계 최초로 입증했다. 이번 연구는 향후 마그논을 이용한 저전력 논리소자, 토폴로지 기반 양자 정보 처리 기술 등에 응용될 수 있는 가능성을 제시함으로써 미래 정보기술의 판도를 바꿀 가능성을 보여주고 있다. 기존 선형 자성체에서는 자기 상태를 나타내는 값(질서 변수)이 벡터로 주어지며, 이에 기반한 마그노닉스 연구에서는 마그논이 스커미온과 같은 솔리톤 구조에서 이동할 때, U(1) 가환 게이지장이 유도된다고 해석되어 왔다. 이는 솔리톤과 마그논의 상호작용은 양자전기역학(QED)과 유사한 구조를 가지며, 이를 통해 2차원 자성체에서의 마그논 홀 효과와 같은 여러 실험적 결과를 잘 설명해 왔다. 하지만 연구팀은 이번 연구를 통해, 쩔쩔맴 자성체에서는 질서 변수가 단순한 벡터가 아닌 쿼터니언(quaternion)으로 표현되어야 하고, 그 결과 마그논이 느끼는 게이지장도 단순한 U(1) 가환 게이지장이 아닌 SU(3) 비가환 게이지장이 된다는 점을 이론적으로 최초 규명했다. 이는 곧 쩔쩔맴 자성체 안에는, 기존의 자성체에서 보이던 한두 가지 종류의 마그논이 아닌, 세 가지 종류의 마그논이 존재하며, 이들 각각이 솔리톤과 복잡하게 얿혀 상호작용하게 된다는 뜻이다. 이러한 구조는 전자기 힘을 설명하는 양자전기역학(QED)보다는, 양자색역학(QCD)과 유사한 구조를 갖는다는 점에서 큰 의미를 지닌다. 김세권 교수는 “이번 연구는 쩔쩔맴 자성체의 복잡한 질서 속에서 발생하는 마그논의 동역학을 설명할 수 있는 강력한 이론적 틀을 제시했다”며, “비가환 마그노닉스를 최초로 제시함으로 양자 자성 연구 전반에 영향을 줄 수 있는 개념적 전환점이 될 것”이라고 말했다. 이번 연구 결과는 독일 마인츠대학 리카르도 자르주엘라(Ricardo Zarzuela) 박사가 제 1저자로 물리 분야 세계적인 학술지 `피지컬 리뷰 레터스(Physical Review Letters)‘에 5월 6일 자로 게재됐다. ※ 논문명 : Non-Abelian Gauge Theory for Magnons in Topologically Textured Frustrated Magnets, Phys. Rev. Lett. 134, 186701 (2025) DOI: https://doi.org/10.1103/PhysRevLett.134.186701 이번 연구는 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스)의 지원을 받아 수행됐다.
2025.05.22
조회수 1466
화학과 이효철 교수, 제34회 삼양그룹 수당상 수상
우리 대학 화학과 이효철 교수가 제34회 삼양그룹 수당상 기초과학 부분 수상자로 선정됐다. 이효철 교수는 지난 20년간 분자 구조동역학 연구에 집중하며 화학 반응중 분자의 구조 변화를 실시간으로 관측하는데 큰 성과를 거두었다. 특히 다양한 분자의 구조동역학을 분석하기 위해 새로운 실험 기법과 분석법을 도입함으로써 기존 연구의 한계를 극복하고 학문 발전에 크게 기여했다. 이 교수는 분자들의 화학 반응 과정을 밝히기 위해 엑스선 회절 방식을 활용해 용액 속 분자의 빠른 구조 변화를 관측하는데 성공하여 2005년‘사이언스'에 발표하며 엑스선 구조동역학 분야를 개척했다. 이후 2015년에는 화학결합 형성 과정을, 2020년에는 화학반응 중 분자 내 모든원자들의 시간-공간적 궤적으로 측정한 연구를 '네이처'에 발표했다. 한편, 삼양그룹이 주관하는 수당상은 기초과학 및 응용과학 분야에서 탁월한 연구 업적을 이룬 연구자 2인을 선정해 상패와 상금 2억원을 수여한다. 시상식은 5월 20일 서울 롯데호텔에서 열릴 예정이다.
2025.05.07
조회수 1485
세상에 없던 아이디어, KAIST가 현실로, 자석으로 양자컴퓨팅 기술 구현
세상에 없는 기술을 제안하라는 KAIST 글로벌 특이점 연구사업으로 시작된 ‘자석으로 양자컴퓨팅 기술을 개발한다’는 아이디어가 현실로 실현되었다. KAIST와 국제공동 연구진은 ‘자기 성질을 가진 물질(자성체)’을 활용해 양자컴퓨팅의 핵심 기술을 세계 최초로 실증하는데 성공했다. 우리 대학 물리학과 김갑진 교수 연구팀이 미국 아르곤 국립 연구소(Argonne National Lab.), 일리노이대 어바나-샴페인(Univ. of Illinois Urbana-Champaign, UIUC)와 공동연구를 통해, ‘광자-마그논 하이브리드 칩’을 개발해 자성체에서 다중 펄스 간섭 현상을 실시간으로 구현하는 데 세계 최초로 성공했다. 쉽게 설명하면, 연구팀은 ‘빛’과 ‘자석 내부의 진동(마그논)’이 함께 작동하는 특수한 칩을 개발하여 멀리 떨어진 자석 사이에서 신호(위상 정보)를 전송하고, 여러 개의 신호가 서로 간섭하는 현상을 실시간으로 관측하고 조절하는 데 성공한 것이다. 이는 자석이 양자 연산의 핵심 부품으로 활용될 수 있다는 것을 보여준 세계 최초의 실험으로, 자성체 기반 양자컴퓨팅 플랫폼 개발의 중요한 전환점이 될 것으로 기대된다. 자석의 N극과 S극은 원자 내부에 존재하는 전자의 스핀(spin)에서 나오게 되는데, 여러 원자가 모였을 때 나타나는 스핀들의 집단적인 진동 상태를 마그논(magnon)이라고 한다. 마그논은 특히, 정보를 한쪽으로만 전달하는 비상호성(nonreciprocity) 특성을 가질 수 있어, 양자 노이즈 차단을 통한 소형 양자 칩 개발에 응용될 수 있고, 광 및 마이크로파와 동시에 결합할 수 있어 양자 정보를 수십 km 거리로 전송하는 양자 통신 소자로도 응용이 가능하다. 또한, 특수한 자석 물질인 반강자성체(antiferromagnet)를 이용하면 양자컴퓨터의 작동 주파수를 훨씬 빠른 속도, THz(테라헤르츠) 대역으로 높여서 현재 양자컴퓨터 하드웨어 한계를 뛰어넘는, 복잡한 냉각 장비 없이도 상온에서 작동하는 양자컴퓨터의 개발이 가능할 수 있다. 그러나, 마그논을 기반으로 한 양자컴퓨팅과 통신 시스템 전반의 구현에 필요한 이 모든 기술을 실현하기 위해서는 마그논 위상 정보, 즉 마그논의 파동이 언제부터 시작되고 움직이는지에 대한 정보를 실시간으로 전송 및 측정하고, 그것을 제어하는 기술이 필수적이었다. 김갑진 교수 연구팀은 작은 자석 구슬인 이트륨 철 가넷(Yttrium Iron Garnet, YIG) 2개를 12 mm 간격으로 배치하고, 그 사이에 구글, IBM 등의 양자컴퓨터에서 사용되는 회로인 초전도 공진기를 설치하여 한쪽 자석에 신호(펄스)를 넣어서 다른 자석까지 정보가 잘 전달되는지를 측정하였다. 그 결과, 수 나노초(ns) 길이의 아주 짧은 하나의 펄스부터 최대 네 개의 마이크로파 펄스를 입력하였을 때 그로 인해 생기는 자석 내부의 진동(마그논)이 초전도 회로를 통해 멀리 있는 다른 자석까지 손실 없이 전달되는 것을 확인하였고, 여러 펄스 사이에 간섭을 일으켰을 때 각각의 위상 정보를 유지하며 신호가 예측대로 보강 또는 상쇄되는 것(결맞음 간섭 현상)을 실시간 도메인에서 관측하는 데 성공했다. 나아가 연구팀은 여러 펄스(신호)의 주파수와 이들 간의 시간 간격을 조절하여 자석 안에 생기는 마그논의 간섭 패턴을 임의로 제어할 수 있음을 입증함으로써, 전기 신호 입력을 통해 마그논의 양자 상태(위상 정보)를 자유롭게 제어할 가능성을 처음으로 입증하였다. 이번 연구는 양자 정보 처리 분야에서 필수적인 여러 개의 신호(다중 펄스)를 활용한 양자 게이트 연산이 자성체-초전도 회로 하이브리드 시스템*에서도 구현될 수 있음을 보여주었다. 이 결과는 자성체 기반 양자 소자가 실질적으로 양자컴퓨팅에 활용될 수 있는 가능성을 열어준다는 점에서 중요한 의미를 가진다. * 자성체-초전도 회로 하이브리드 시스템: 자성체의 마그논과 초전도 회로를 결합해, 서로의 장점을 살린 새로운 양자 연산 시스템 김갑진 교수는“이번 연구는‘세상에 없는 기술을 제안하라’는 KAIST 글로벌 특이점 연구사업에‘자석으로 양자컴퓨터를 개발할 수 있을까?’라는 다소 엉뚱하지만 모험적인 아이디어를 제안하며 시작되었다”며 “그 여정 자체가 매우 흥미로웠으며, 특히 이번 연구 결과는 양자 스핀트로닉스(quantum spintronics)라는 새로운 연구 분야의 가능성을 열었을 뿐만 아니라, 고효율 양자정보 처리 장치 개발을 위한 중요한 전환점이 될 것으로 기대된다”라고 말했다. 물리학과 송무준 박사후연구원이 제1 저자로 참여하고 미국 아르곤 국립 연구소(Argonne National Laboratory)의 이 리(Yi Li) 박사, 발렌틴 노보사드(Valentine Novosad) 박사, 일리노이 주립대학교(University of Illinois Urbana-Champaign, UIUC)의 악셀 호프만(Axel Hoffmann) 교수 연구팀이 참여한 이번 연구는 네이처 출판 그룹이 출간하는 국제 학술지 ‘엔피제이 스핀트로닉스(npj spintronics)’와 `네이처 커뮤니케이션즈(Nature Communications)'에 4월 1일, 4월 17일에 연이어 출판되었다. ※ 논문명 1: Single-shot magnon interference in a magnon-superconducting-resonator hybrid circuit, Nat. Commun. 16, 3649 (2025), DOI: https://doi.org/10.1038/s41467-025-58482-2 ※ 논문명 2: Single-shot electrical detection of short-wavelength magnon pulse transmission in a magnonic ultra-thin-film waveguide, npj Spintronics 3, 12 (2025), DOI: https://doi.org/10.1038/s44306-025-00072-5 이번 연구는 KAIST 글로벌특이점연구사업과 과학기술정보통신부 한국연구재단 중견연구, 선도연구센터, 양자정보과학인적기반 조성사업 및 미국 에너지부의 지원을 받아 수행됐다.
2025.05.07
조회수 2697
화학과 김형준 교수, 양자 및 계산화학 최고 권위 포플 메달 수상
우리 대학 화학과 김형준 교수가 4월 25일 일본 고베에서 열린 아태 이론 및 계산화학회(Asia-Pacific Association of Theoretical & Computational Chemists, APATCC)에서 포플 메달(Pople Medal)을 수상했다. 김형준 교수는 복잡한 전기화학 계면 화학 현상을 규명하기 위한 새로운 계산화학 방법론을 개발한 공로를 인정받아 본 상을 수상하였다. 전기화학 기술은 친환경적으로 생산된 전기를 효과적으로 활용하기 위한 핵심 기술로 에너지 전환 및 저장 분야에서 중요한 역할을 한다. 김 교수는 독자적으로 개발한 계산화학 방법론을 활용하여 전기화학 분야의 오랜 난제 중 하나인 ‘전기 이중층*’ 구조를 규명하였으며, 이러한 연구는 에너지 및 환경 문제 해결에 중요한 기여를 한 것으로 평가받고 있다. *전기 이중층: 전극(금속)과 전해질(이온이 녹아 있는 액체) 사이에 자연스럽게 형성되는 전하의 분포 구조로 좀 더 효율적인 배터리, 슈퍼커패시터, 연료전지 등 만드는데 기여 포플 메달은 1998년 노벨 화학상 수상자인 존 포플(John Pople) 교수를 기념하여 제정된 상으로, 포플 교수는 양자 이론을 이용하여 화학적 특성을 예측하는 계산 방법론을 개발하고, 이를 컴퓨터를 기반의 계산화학 시뮬레이션 시대를 연 공로를 인정받아 노벨상을 수상했다. 이 상은 포플 교수의 업적을 기념하여 양자 및 계산화학 분야에서 선구적이고 중요한 공헌을 한 아시아 태평양 지역의 만 45세 이하 연구자에게 매년 수여된다. 각국에서 추천받은 후보자 중 한 명에게만 수여되는 권위 있는 상이다. 김형준 교수는 “양자 및 계산화학 분야의 최고 권위 있는 상을 수상하게 되어 영광이며, 기초 과학의 진보를 통한 계산화학 연구가 미래 에너지 및 환경 문제 해결에 기여할 수 있도록 지속적으로 연구를 이어가겠다”라고 소감을 밝혔다. 한편, 아태 이론 및 계산화학회(APATCC)는 아시아 태평양 지역 내 계산 및 이론 화학 분야의 발전과 연구 협력을 촉진하기 위해 설립된 학회로, 국제 학술대회 개최를 통해 해당 분야의 최신 연구 성과를 공유하고 있다. 관련 웹사이트: http://129.226.162.82/news.html
2025.04.28
조회수 1787
세계 최초 플라빈 빛 파장 설계 성공, 의료·환경 혁신
플라빈은 우리 몸 등 생명체 내의 에너지 생산과 생화학 반응에 관여하는 중요한 조효소이자 특정 색의 빛을 방출하는 형광 분자다. 하지만 자연계의 플라빈은 대부분 파란색에서 초록색 영역까지 짧은 파장의 빛을 낼 수 있어, 그보다 긴 파장인 적외선 영역까지는 확장되기 어렵다. KAIST 연구진이 기존 한계를 극복하고 플라빈이 내뿜는 형광 파장을 근적외선까지 확장하여 의료·환경·에너지 분야의 새로운 가능성을 제시했다. 우리 대학 화학과 백윤정 교수 연구팀은 근적외선 파장에서 발광이 가능한 5개의 고리 구조를 가진 새로운 오환형 플라빈 분자를 세계 최초로 개발하는 데 성공했다. 백윤정 교수 연구팀은 전통적으로 세 개의 고리를 갖는 플라빈 구조에서 플라빈의 핵심 구조를 5개의 고리로 확장하고, 여기에 산소 및 황 등 이종 원자를 정교하게 도입함으로써 분자의 전자 구조를 정밀하게 조절하는 새로운 합성 전략을 제시했다. 특히 이번에 개발된 분자는 적외선에 가까운 짙은 붉은색 및 근적외선 영역의 빛을 낼 수 있어, 기존 플라빈 색소가 낼 수 있었던 색의 범위를 획기적으로 확장했다는 평가를 받고 있다. 그 결과, 황이 포함된 구조체는 772 nm에 달하는 근적외선 영역에서 발광하며, 이는 지금까지 보고된 플라빈 유도체 중 가장 긴 파장이다. 또한 이 분자는 기존의 플라빈에서 드물게 관찰되던 준가역적인 산화 특성을 나타내어 전기화학적 기능성까지 동시에 갖춘 다기능성 분자 플랫폼으로 주목받고 있다. 연구팀은 분자의 구조를 미세하게 조절함으로써, 빛을 어떻게 흡수하고 방출할지를 원하는 대로 설계할 수 있게 되었고, 전기 신호를 전달하거나 변환하는 능력 또한 함께 제어할 수 있음을 입증했다. 이번 연구는 기존 플라빈의 한계를 뛰어넘어 빛의 파장을 바꿈으로서 활용 기술과 응용 범위를 넓힐 수 있다는 것을 보여줬다. 예를 들어, 근적외선(NIR) 같은 긴 파장의 빛을 통해 몸 속 더 깊이 정확하게 진단·치료하게 하며, 오염이나 독성물질이 특정 빛에 반응하도록 설계도 가능하며, 긴 파장의 빛을 흡수해서 친환경 에너지로 만들게 하는 등 발광 파장과 전자 특성을 정밀하게 제어하는 새로운 플랫폼을 제시하였다. 백윤정 교수는 “플라빈의 빛 파장을 바꿀 수 있다는 것은 우리가 원하는 상황에 맞게 빛을 자유롭게 설계하고 활용할 수 있다는 뜻으로, 앞으로 우리 손으로 원하는 색과 성질을 가진 분자를 정밀하게 디자인하고 만들수 있다는 가능성을 보여준 것”이라며, “이는 의료, 환경, 에너지 등 빛 기반 기술이 적용되는 수많은 분야에서 게임 체인저가 될 수 있는 기반 기술이 될 것”이라고 말했다. 해당 성과는 세계적인 국제 학술지 Nature사가 발행하는 `네이처 커뮤니케이션즈(Nature Communications)'에 4월 15일자로 게재되었다. ※ 논문명 : Expanding the Chemical Space of Flavins with Pentacyclic architecture ※ 저자 정보 : 서다영 (KAIST, 제1 저자), 권성연 (기초과학연구원, 공동 제2 저자), 윤가혜 (KAIST, 공동 제2 저자), 손태일 (KAIST, 공동 제2 저자), 원창현 (KAIST, 제3 저자), Neetu Singh (KAIST, 제4 저자), 김동욱 (기초과학연구원, 제5 저자) 및 백윤정 (KAIST, 교신저자) 포함 총 8 명 DOI: 10.1038/s41467-025-58957-2 한편, 이번 연구는 과기정통부가 지원하는 개인기초연구사업의‘우수신진연구’와 산업통상자원부가 지원하는‘소재부품개발사업’과제의 지원을 받아 수행됐다.
2025.04.23
조회수 2687
25년 산학협력 결실, 김성각 명예교수 12억원 상당 주식 KAIST 기부
우리 대학 김성각 화학과 명예교수가 12억 원 상당의 ㈜한켐 주식 12만 주를 기부했다. 이번 기부는 KAIST 화학과와 ㈜한켐이 지난 25년간 이어온 긴밀한 산학협력의 상징으로, 학문과 산업이 함께 걸어온 여정의 결실이라는 점에서 큰 의미를 가진다. 특히, 연구 성과가 산업 성장으로 이어지고, 다시 대학 발전을 위한 기부로 환원되는 선순환 구조를 보여주는 모범 사례로 평가받고 있다. 김 교수는 1999년 유기합성 분야 우수연구센터(SRC)*인‘분자설계합성연구센터(CMDS)’를 KAIST에 유치하며 ㈜한켐과의 협력을 시작했다. 센터장으로서 오랜 기간 공동 연구를 이끌어왔고, 그 결과 ㈜한켐은 KAIST 기술을 바탕으로 성장했다. * 우수연구센터(SRC): 한국연구재단의 국내 최고 연구자를 지원하는 집단연구 지원사업으로 이학 분야 연구센터(Science Research Center) ㈜한켐은 현재 국내 최고 수준의 유기합성기술 기반 임상시험수탁(CRO), 의약품 위탁생산(CMO) 전문기업으로 OLED 소재 등 첨단 화학소재 분야를 선도하고 있다. 창업 초기인 1999년부터 2002년까지 KAIST 보육기업으로 입주한 이래, KAIST 화학과와의 지속적인 기술 교류를 성장의 동력으로 삼아왔다. ㈜한켐에서는 KAIST와의 협력 성과를 바탕으로 학과와 화학소재 산업에 기여하길 바란다고 전했다. KAIST 화학과는 이번 기부를 바탕으로 연구 인프라를 강화하고, 화학 분야의 차세대 핵심 기술 개발과 신사업 발굴에 나설 계획이다. 김성각 명예교수는 “분자설계합성연구센터를 중심으로 이뤄진 긍정적인 협력이 ㈜한켐의 성장을 이끌었고, 이번 기부가 KAIST 화학과의 미래를 여는 초석이 되기를 바란다”고 밝혔다. 이광형 KAIST 총장은 “(주)한켐과 KAIST 화학과의 산학협력은 기초과학이 산업에 성공적으로 접목된 모범 사례로, 오랜 기간 이어온 협력의 성과가 이번 기부로 빛을 발하게 되었다”며, “김성각 교수님의 헌신과 ㈜한켐의 지원이 KAIST의 연구 역량을 한층 강화하고 우리나라 화학 산업의 미래를 밝히는 데 기여할 것”이라고 감사를 표했다. 이번 발전기금 약정식은 4월 22일 KAIST 대전 본원에서 열렸으며, 이광형 총장, 김성각·도영규 명예교수, 장석복 석좌교수, 송현준 학과장과 ㈜한켐 이상조 대표, 서명준 부사장이 함께 자리했다.
2025.04.22
조회수 1171
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 33