본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%83%9D%EB%AA%85%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EB%8C%80%ED%95%99
최신순
조회순
음주로 인한 간염 유발 원리 최초 밝혔다
과도한 음주는 알코올성 간질환을 유발하며, 이 중 약 20%는 알코올 지방간염으로 진행되고 이는 간경변증과 간부전으로 이어질 수 있어 조기 진단과 치료가 매우 중요하다. 우리 연구진은 음주 시 활성산소(ROS)가 발생해 간세포 사멸과 염증 반응을 유발하는 새로운 분자 메커니즘을 규명했다. 아울러, 간세포가 신경계의 시냅스처럼 신호를 주고 받는 유사시냅스를 형성하고 염증을 유도하는 ‘새로운 신경학적 경로’를 세계 최초로 밝혀냈다. 우리 대학 의과학대학원 정원일 교수 연구팀이 서울대 보라매 병원 김원 교수 연구팀과의 공동 연구를 통해, 음주로 인한 간 손상 및 염증(알코올 지방간염, Alcohol-associated Steatohepatitis, ASH)의 발생 기전을 분자 수준에서 규명해 알코올 간질환의 진단과 치료에 단서를 제시했다고 17일 밝혔다. 정원일 교수 연구팀은 만성 음주 시 ‘소포성 글루탐산 수송체(VGLUT3)’의 발현 증가로 글루탐산이 간세포에 축적되며, 이후 폭음으로 인한 간세포 내 칼슘 농도의 급격한 변화가 글루탐산* 분비를 유도함을 확인했다. *글루탐산: 아미노산의 일종으로, 뇌와 간을 포함한 다양한 조직에서 세포 간 신호전달, 단백질 합성, 에너지 대사 등에 관여하며 지나치게 많으면 신경세포가 과흥분하여 세포 손상 또는 사멸하게 함 분비된 글루탐산은 간 내 상주 대식세포인 쿠퍼세포의 글루탐산 수용체(mGluR5)를 자극해 활성산소(ROS) 생성을 유도하고, 이는 곧 간세포 사멸과 염증 반응으로 이어지는 병리적 경로를 형성한다는 사실을 밝혀냈다. 특히 이번 연구의 핵심은, 음주 시 간 내에서 간세포와 쿠퍼세포가 일시적으로 신경계에서만 관찰되던 시냅스와 비슷한 구조인‘유사시냅스(pseudosynapse)’를 형성해 신호를 주고받는 현상을 처음으로 규명했다는 점이다. 이 유사시냅스 혹은 대사시냅스(metabolic synapse)는 음주로 인해 간세포가 팽창(ballooning)되면서 쿠퍼세포와 물리적으로 밀착될 때 형성된다. 즉, 손상된 간세포가 단순히 사멸하는 것이 아니라, 인접한 쿠퍼세포에 신호를 보내 면역 반응을 유도할 수 있다는 의미이다. 이러한 발견은 말초 장기에서도 ‘세포 간 밀접한 구조적 접촉을 통해 신호전달이 가능하다’라는 새로운 패러다임을 제시하며, 단순한 간세포 손상을 넘어 알코올로 손상된 간세포가 능동적으로 대식세포를 자극해 간세포의 사멸을 통한 재생을 유도하는‘자율 회복기능’도 존재함을 보여줬다. 실제로 연구팀은 글루탐산 수송체(VGLUT3), 글루탐산 수용체(mGluR5) 및 활성산소 생성 효소(NOX2)를 유전적 또는 약리적으로 억제하면 알코올 매개 간 손상이 줄어든다는 사실을 동물 모델을 통해 입증했다. 이러한 기전을 기반으로, 연구팀은 알코올성 간질환 환자의 혈액과 간 조직을 분석해 해당 메커니즘이 임상적으로도 적용될 수 있음을 제시했다. 의과학대학원 정원일 교수는 “이는 향후 알코올 지방간염(ASH)의 발병 초기 단계에서 진단용으로 혹은 치료를 위한 새로운 분자 표적으로 활용될 수 있다”라고 말했다. 의과학대학원 양경모 박사(현, 여의도 성모병원)와 김규래 박사과정생이 공동 제1 저자로 참여한 이번 연구는 서울대 보라매병원 김원 교수 연구팀과 함께 진행됐으며, 국제 학술지 `네이처 커뮤니케이션즈(Nature communications)' 지난 7월 1일 자로 출판됐다. ※ 논문명: Binge drinking triggers VGLUT3-mediated glutamate secretion and subsequent hepatic inflammation by activating mGluR5/NOX2 in Kupffer cells ※ DOI: 10.1038/s41467-025-60820-3. 한편, 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 글로벌 리더연구, 중견연구자사업 및 바이오·의료기술개발사업의 지원으로 수행됐다.
2025.07.17
조회수 207
뇌는 포도당을 구별한다..비만·당뇨 치료의 단서 찾아
‘우리의 뇌는 어떻게 장내에서 흡수된 다양한 영양소 중 포도당을 구별해낼까?’ 우리 대학 연구진은 이 질문에서 출발해, 뇌가 단순히 총열량(칼로리)을 감지하는 수준을 넘어 특정 영양소, 특히 포도당을 선택적으로 인식할 수 있다는 사실을 입증했다. 이번 연구는 향후 식욕 조절 및 대사성 질환 치료 전략에 새로운 패러다임을 제시할 수 있을 것으로 기대된다. 우리 대학 생명과학과 서성배 교수 연구팀이 바이오및뇌공학과 박영균 교수팀, 생명과학과 이승희 교수팀, 뉴욕 알버트 아인슈타인 의과대학과의 협력을 통해, 배고픔 상태에서 포도당이 결핍된 동물이 장내의 포도당을 선택적으로 인식하고 선호하도록 유도하는 장-뇌 회로의 존재를 규명했다고 9일 밝혔다. 생물은 당, 단백질, 지방 등 다양한 영양소로부터 에너지를 얻는다. 기존 연구들은 장내 총열량 정보가 시상하부의 배고픔 뉴런(hunger neurons)을 억제함으로써 식욕을 조절한다는 사실을 밝혀왔으나, 특정 포도당에 특이적으로 반응하는 장-뇌 회로와 이에 반응하는 특정 뇌세포의 존재는 규명되지 않았다. 연구팀은 이번 연구를 통해 뇌의 기능에 필수적인 포도당을 감지하고 필요한 영양소에 대한 섭취 행동을 조절하는 ‘장-뇌 회로’를 밝혀내는 데 성공했다. 또한, 이 회로는 뇌의 ‘스트레스 반응 세포(CRF 뉴런*)’가 배고픔이나 외부 자극뿐만 아니라, 소장에 직접 유입된 특정 열량 영양소에 대해서도 초 단위로 반응하며, 특히 ‘포도당(D-glucose)’에 선택적으로 반응한다는 점을 처음으로 입증했다. *CRF 뉴런: 우리 몸이 심리적·물리적 스트레스에 대응하는 핵심 생리 시스템은 시상하부-뇌하수체-부신 축(Hypothalamus-Pituitary-Adrenal Axis, HPA axis)이다. 이 축의 중심에는 시상하부에서 CRF(부신피질호르몬 방출인자)를 분비하는 뉴런이 있으며, 이들은 다양한 스트레스 자극에 반응해 코르티솔 분비를 유도하고, 생리 및 대사 균형을 유지하는 신경 내분비 조절의 중추로 알려져 있다. 연구팀은 실시간 뇌 속을 정밀하게 추적할 수 있는 광유전학 기반 신경 활성 조절 및 회로 추적 기법을 활용해서, 포도당(D-글루코스, L-글루코스,) 아미노산, 지방 등 다양한 영양소의 쥐의 소장 내 직접 주입하고 관찰했다. 그 결과, 뇌 시상하부의 ‘시상하부 시상핵(PVN)* 부위’에 있는 CRF 뉴런 중 D-글루코스(glucose) 포도당에만 선택적으로 반응하며, 다른 당류나 단백질·지방류에는 반응하지 않거나 반대 방향의 반응을 보이는 것을 확인했다. 이는 뇌가 장내 영양소가 유입 시 반응에 대해 단일 뇌세포 수준에서 어떤 방향성을 유도한다는 것을 처음 확인한 것을 의미한다. * 시상하부 시상핵(paraventricular nucleus, PVN): 뇌의 시상하부(hypothalamus) 안에 있는 매우 중요한 신경핵(뉴런 무리)으로, 신체 항상성(몸의 균형 유지)을 조절하는 핵심 구조 또한, 연구팀은 소장의 포도당 감지 신호가 ‘척수신경’을 거쳐 뇌의 특정 부위(등쪽 외측 팔곁핵,parabrachial nucleus, PBNdl)을 통해 PVN의 CRF 뉴런으로 전달되는 특징적인 회로를 밝혀냈다. 반면, 아미노산이나 지방 등 기타 영양소는 미주신경(vagus nerve)이란 다른 통로로 뇌에 전달된다는 사실도 확인했다. 광유전학적 억제 실험에서도, 공복 상태의 생쥐에서 CRF 뉴런을 억제하면 동물은 더 이상 포도당을 선호하지 않게 됐으며, 이 회로가 영양소 선택에 있어 포도당 특이적 선호를 유도하는 데 필수적임이 드러났다. 이 연구는 서 교수가 뉴욕대(NYU) 재직 시절 초파리를 모델로, 장내 포도당(글루코스) 및 당을 선택적으로 감지하는 ‘DH44 뉴런’을 발견했던 점을 착안해, 포유류에서도 시상하부 뉴런이 포도당 특이적 반응에 있어 기능적 유사성을 보일 것이라는 가설에서 시작되었다. 이 가설을 입증하기 위해 서 교수 연구팀 김진은 박사(KAIST 박사 졸, 現 캘리포니아공과대학교 연수연구원)가 학위과정 중 생쥐 실험을 통해 배고픈 쥐는 장에 주입된 다양한 영양소 중 열량을 지닌 포도당을 선호하며, CRF 뉴런이 빠르고 특이적인 반응을 보인다는 사실을 확인했다. 또한, 같은 팀 정원교 연구원(KAIST 학사 졸, 現 캘리포니아공과대학교 박사과정)과 함께 실험과 모델링을 통해 CRF 뉴런의 중요성을 규명했고, 김신혜 박사는 협업을 통해 장-뇌 회로 중 특정 척추 신경세포가 장의 정보를 뇌로 전달 한다는 놀라운 발견을 입증했다. 김진은 박사와 김신혜 박사는 “이 연구는 ‘우리의 뇌는 어떻게 장내에서 흡수된 다양한 영양소 중 포도당을 구별해내는가?’라는 단순하지만, 본질적인 질문에서 시작됐고, 이번 연구에서 장-뇌 연결 회로의 핵심 축인 척수신경의 역할을 규명하고 장내 특정 영양소를 감지한 후 이를 뇌에 전달하는 척수 기반 신경 회로가 우리 몸의 에너지 대사 조절과 항상성 유지에 핵심적일 것이라는 것을 밝혀냈다”고 말했다. 서성배 교수는 “이번 연구는 포도당에 특화된 장-뇌 신호 경로를 규명함으로써, 비만·당뇨병 등 대사 질환의 새로운 치료 표적을 제시할 수 있다”며 “향후 아미노산, 지방 등 다른 필수 영양소를 감지하는 유사 회로의 존재와 그 상호작용 메커니즘을 밝히는 연구로 확장될 예정”이라고 밝혔다. 우리 대학 김진은 박사, 김신혜 박사, 정원교 학생이 공동 제1 저자로 참여한 이번 연구의 결과는 국제 학술지 ‘뉴런(Neuron)’에 2025년 6월 20일 온라인 게재됐다. ※논문명: Encoding the glucose identity by discrete hypothalamic neurons via the gut-brain axis ※DOI: https://doi.org/10.1016/j.neuron.2025.05.024 이번 연구는 삼성미래기술육성사업, 한국연구재단 리더과제, 포스코 청암재단 사이언스 펠로십, 아산재단 의생명과학 장학사업, 기초과학연구원, KAIST KAIX 사업의 지원을 통해 수행됐다.
2025.07.09
조회수 628
부작용·내성 극복한 신개념 칸디다증 치료제 개발
칸디다증은 곰팡이균(진균)의 일종인 칸디다(Candida)가 혈액을 통해 전신으로 퍼지며 장기 손상과 패혈증을 유발할 수 있는 치명적인 감염 질환이다. 최근 면역 저하 치료, 장기 이식, 의료기기 사용 등이 증가함에 따라 칸디다증 발병이 급증하고 있다. 한국 연구진이 기존 항진균제와 달리, 칸디다균에만 선택적으로 작용해 높은 치료 효능과 낮은 부작용을 동시에 갖춘 차세대 치료제를 개발하는데 성공했다. 우리 대학 생명과학과 정현정 교수 연구팀이 서울아산병원 정용필 교수팀과의 협력을 통해, 칸디다 세포벽의 두 핵심 효소를 동시에 저해하는 유전자 기반 나노치료제(FTNx)를 개발했다고 8일 밝혔다. 현재 사용 중인 칸디다의 항진균제들은 표적 선택성이 낮아 인체 세포에도 영향을 미칠 수 있으며, 이에 내성을 가지는 새로운 균의 출현으로 인해 치료 효과가 점차 떨어지고 있다. 특히 면역력이 저하된 환자들에게는 감염의 진행이 빠르고 예후도 좋지 않아, 기존 치료제의 한계를 극복할 수 있는 새로운 치료법의 개발이 시급한 상황이다. 이에 연구팀이 개발한 치료제는 전신 투여가 가능하며, 유전자 억제 기술과 나노소재 기술을 융합함으로써 기존 화합물 기반의 약물들이 가지는 구조적 한계를 효과적으로 극복하고, 칸디다균에만 선택적으로 치료하는데 성공했다. 연구팀은 칸디다라는 곰팡이균의 세포벽을 만드는 데 중요한 두 가지 효소 — β‑1,3‑글루칸 합성효소(FKS1)와 키틴 합성효소(CHS3)를 동시에 표적하는 짧은 DNA 조각(antisense oligonucleotide, ASO)을 탑재한 금 나노입자 기반의 복합체를 제작했다. 여기에 칸디다 세포벽의 특정 당지질 구조(당과 지방이 결합된 구조)와 결합하는 표면 코팅 기술을 적용하여 표적유도장치를 장착함으로써, 인체 세포에는 아예 전달되지 않고 칸디다에만 선택적으로 작용하는 정밀 타겟팅 효과를 구현하는 데 성공했다. 이 복합체는 칸디다 세포 내로 진입한 후, FKS1 및 CHS3의 유전자가 만들어내는 mRNA를 잘라버려서 번역을 억제해 세포벽 성분인 β‑1,3‑글루칸과 키틴의 합성을 동시에 차단한다. 이로 인해 칸디다 세포벽은 구조적 안정성을 유지하지 못하고 붕괴되며, 세균의 생존과 증식이 억제된다. 실제로 쥐에서 전신 칸디다증 모델 실험을 통해 치료 효과를 검증한 결과, 치료군에서 칸디다의 장기 내 균 수 감소, 면역 반응 정상화, 그리고 생존율의 유의미한 증가가 관찰됐다. 연구를 주도한 정현정 교수는 “이번 연구는 기존 치료제가 인체 독성과 약제내성 확산 문제를 극복하는 방법을 제시하며, 유전자 치료의 전신 감염 적용 가능성을 보여주는 중요한 전환점”이라며, “향후 임상 적용을 위한 투여 방식 최적화 및 독성 검증 연구를 지속적으로 진행할 계획”이라고 밝혔다. 해당 연구는 생명과학과 정주연 학생 및 서울아산병원 홍윤경 박사가 제1 저자로 참여했으며, 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 7월 1일 자로 게재됐다. ※ 논문명 : Effective treatment of systemic candidiasis by synergistic targeting of cell wall synthesis ※ DOI : 10.1038/s41467-025-60684-7 이번 연구는 보건복지부 및 한국연구재단의 지원을 받아 수행됐다.
2025.07.08
조회수 1006
장내 미생물로 난치성 뇌종양 면역치료 효과 높인다
우리 몸의 면역세포인 T세포를 활성화시켜 암세포를 제거하도록 유도하는 첨단 치료법인 ‘면역항암제’는 가장 치명적인 뇌종양 ‘교모세포종(Glioblastoma)’에는 거의 반응하지 않고, 치료에 대한 저항성이 높아 단독 치료로는 효과가 매우 제한적이라는 한계가 있었다. 이에 우리 연구진이 장내 미생물과 그 대사산물을 활용해 뇌종양의 면역치료 효과를 높일 수 있는 새로운 치료 전략을 세계 최초로 입증했다. 향후 미생물을 기반으로 한 면역치료 보완제 개발에 대한 가능성도 보여줬다. 우리 대학 생명과학과 이흥규 교수 연구팀이 장내 미생물 생태계 변화에 주목해 교모세포종 면역치료의 효율을 크게 높이는 방법을 발굴하고 이를 입증했다고 1일 밝혔다. 연구팀은 교모세포종이 진행되면서 장내에서 중요한 아미노산인 ‘트립토판(tryptophan)’의 농도가 급격히 줄어들고, 이로 인해 장내 미생물 생태계가 변화한다는 점에 주목했다. 그리고 트립토판을 보충해 미생물 다양성을 회복시키면, 특정 유익한 균주가 면역세포 중 하나인 CD8 T세포를 활성화하고 종양 조직으로 다시 유도하는 역할을 한다는 사실을 밝혀냈다. 연구팀은 생쥐 교모세포종 모델을 통해, 트립토판을 보충하면 암을 공격하는 T세포(특히 CD8 T세포)의 반응이 향상되고, 이들이 림프절과 뇌 등 종양이 있는 부위로 더 많이 이동한다는 사실을 확인했다. 이 과정에서 장내에 존재하는 유익한 공생균인 ‘던카니엘라 두보시(Duncaniella dubosii)’가 핵심적인 역할을 한다는 점도 밝혀냈다. 해당 균주는 T세포가 몸 안에서 효과적으로 재분포하도록 도와줬고, 면역항암제(anti-PD-1)와 함께 사용할 때 생존율이 유의미하게 향상됐다. 또한, 장내 미생물이 전혀 없는 무균 생쥐에게 위 공생균을 단독으로 투입해도 교모세포종에 대한 생존율이 높아졌으며, 이는 이 균주가 트립토판을 활용해 장내 환경을 조절하고, 그 과정에서 생성되는 대사산물이 CD8 T세포의 암세포 공격 능력을 강화하기 때문임이 입증됐다. 이흥규 교수는 “이번 연구는 면역관문억제제가 효과를 보이지 않았던 난치성 뇌종양에서도, 장내 미생물을 활용한 병용 전략을 통해 치료 반응을 유의하게 높일 수 있음을 보여준 의미 있는 성과”라고 설명했다. 우리 대학 김현철 박사(現, 생명과학연구소 박사후연구원)가 제1 저자로 참여했고 연구 결과는 생명과학 분야 국제 학술지‘셀 리포츠(Cell Reports)’에 지난 6월 26 일자 온라인판에 게재됐다. (논문명: Gut microbiota dysbiosis induced by brain tumor modulates the efficacy of immunotherapy, https://doi.org/10.1016/j.celrep.2025.115825) 한편, 이번 연구는 과학기술정보통신부와 한국연구재단이 지원하는 개인기초연구사업 및 바이오의료기술개발사업의 일환으로 수행됐다.
2025.07.01
조회수 1114
간 조직 속 노화 신호 미리 잡아 질병 예측한다
노화나 만성 질환은 장기간에 걸쳐 미세한 조직 변화가 서서히 축적되는 과정을 거치기 때문에, 장기 내 이러한 변화를 정량적으로 파악하고, 이를 질병 발병의 초기 신호와 연결하는 데에는 여전히 한계가 있다. 이에 우리 연구진이 조직 안에서 처음 문제가 생기는 국소적인 변화를 정확히 포착해, 질병을 더 빠르게 발견하고 예측하며, 맞춤형 치료 타깃을 설정하는 데 큰 도움이 될 플랫폼 기술을 개발하는 데 성공했다. 우리 대학 의과학대학원 박종은 교수, 한국생명공학연구원(KRIBB, 원장 권석윤) 노화융합연구단 김천아 박사 공동 연구팀이 노화 간 조직 내에서 국소적으로 발생하는 섬유화된 미세환경을 포착하고 이를 *단일세포 전사체 수준으로 정밀 분석*할 수 있는 ‘파이니-시퀀싱(FiNi-seq, Fibrotic Niche enrichment sequencing)’기술을 개발했다고 12일 밝혔다. *단일세포 전사체 분석: 세포 하나하나가 어떤 유전자를 얼마나 활발히 사용하고 있는지를 측정하는 방법으로 세포별 병든 세포의 정체와 기능을 파악할 수 있게 해줌 연구진은 노화된 간 조직에서 조직 분해 저항성이 높은 영역을 물리적 성질을 통해 선별하는 방법을 통해, 재생이 지연되고 섬유화가 축적되는 초기 노화 미세환경을 선택적으로 농축하는 방법을 개발했다. 이 과정에서 기존의 단일세포 분석 기술로는 포착하기 어려웠던 섬유화 관련 혈관내피세포와 면역과 상호작용을 하는 섬유아세포, PD-1 고발현 CD8 T세포 등 면역 탈진세포를 고해상도로 확인할 수 있었다. 특히 연구진은 ‘FiNi-seq’ 기술을 통해 노화 간 조직 내 섬유화 부위에서 관찰되는 특정 세포들이 분비 인자를 통해 주변 환경을 이차적으로 노화시키고, 이로 인해 노화된 환경이 확장된다는 것을 확인했다. 또한, 혈관내피세포가 조직 고유의 정체성을 상실하고 선천면역 반응을 유도해 면역세포 유입을 촉진하는 메커니즘도 규명했다. 공간 전사체 분석을 통해 면역세포와 상호작용을 하는 섬유아세포의 공간적 분포를 정량화하고, 이들이 조직 재생, 염증 반응의 유도, 만성 섬유화로의 이행에 관여함을 밝혔다. 연구팀은 전사체와 후성유전체 정보를 얻어내는 멀티-오믹스* 데이터를 통합 분석해 노화된 간 조직의 미세환경과 이의 공간적 이질성을 정밀하게 해석했으며, 이러한 변화들이 간 내 혈관 구조와 어떻게 연결되는지 확인했다. *멀티-오믹스(multi-omics): 유전자, 단백질, 대사물질, 세포 정보 등 생물체 내 다양한 생체 정보를 통합적으로 분석하는 방법 이번에 개발된 ‘FiNi-seq’ 기술은 섬유화를 유발하는 노화 과정을 포함해 대부분의 만성 간질환에서 병태생리적 신호를 고해상도로 포착하는 데 유용한 플랫폼으로 기대된다. 제1 저자인 의과학대학원 탁권용 박사는 서울성모병원 소화기내과의 간 전문의로, 의사과학자 양성 사업의 지원을 받아 우리 대학 의과학대학원에서 박사 학위를 수행하며 만성 간질환에서 가장 중요한 임상 예후 지표인 섬유화의 진행을 조기에 진단하고 치료할 수 있는 기반을 마련하기 위해 이번 연구를 설계했다. 공동 제 1 저자인 의과학대학원 박명선 박사과정생은 FiNi-seq 기술의 기술적 구현을, KRIBB 노화융합연구단의 김주연 박사과정생은 노화 조직의 이미징 분석을 담당하여 연구에 핵심적 역할을 수행했다. KRIBB 김천아 박사는 “이번 연구를 통해 노화 간 조직에서 관찰되는 섬유화된 미세환경의 세포 구성과 공간적 특성을 단일세포 수준에서 정밀하게 규명할 수 있었다”고 말했다. 의과학대학원 박종은 교수는 “노화 및 만성질환 초기 단계에서 발생하는 섬세한 변화를 조기에 포착할 수 있는 분석 기술로서, 향후 효과적인 치료 지점을 찾는데 큰 역할을 할 수 있을 것으로 기대된다. 또한, 다양한 간질환 모델뿐만 아니라 폐, 신장 등 다른 장기의 만성 질환 연구로 확장해서 진행할 예정이다”라고 밝혔다. 이 연구는 의과학대학원 탁권용 박사, KRIBB 박사과정 김주연 연구원, 우리 대학 박사과정 박명선 학생이 제1 공동저자로 국제 학술지 ‘네이처 에이징(Nature Aging)’ 2025년 5월 5일 자에 게재됐다. ※논문제목: Quasi-spatial single-cell transcriptome based on physical tissue properties defines early aging associated niche in liver ※DOI: https://doi.org/10.1038/s43587-025-00857-7 이번 연구는 한국연구재단, 한국보건산업진흥원(KHIDI), 한국생명공학연구원KRIBB, KIST, 포스코사이언스펠로우십, 융합형의사과학자 양성사업 등 국내 여러 기관의 지원을 받아 수행됐다.
2025.06.12
조회수 1713
세계 최초 유전자 가위로 원하는 RNA ‘콕’ 집어 변형 성공
RNA 유전자 가위는 코로나바이러스와 같은 바이러스의 RNA를 제거하여 감염을 억제하거나 질병 원인 유전자 발현을 조절할 수 있어, 부작용이 적은 차세대 유전자 치료제로 크게 주목받고 있다. 우리 연구진은 세포 내 존재하는 수많은 RNA(유전 정보를 전달하고 단백질을 만드는 데 중요한 역할을 하는 분자) 중에서 원하는 RNA만을 정확하게 찾아서 아세틸화(화학 변형)할 수 있는 기술을 세계 최초로 개발했고, 이는 RNA 기반 치료의 새 장을 열 수 있는 핵심 기술이 될 것으로 기대된다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 최근 유전자 조절 및 RNA 기반 기술 분야에서 각광받는 RNA 유전자 가위 시스템(CRISPR-Cas13)을 이용해 우리 몸 안의 특정한 RNA에 아세틸화를 가할 수 있는 혁신적 기술을 개발했다고 10일 밝혔다. RNA는 ‘화학 변형(chemical modification)’이란 과정을 통해 그 특성과 기능이 변화할 수 있다. 화학 변형이란 RNA 염기 서열 자체의 변함없이 특정 화학 그룹이 추가됨으로써 RNA의 성질과 역할을 변화시키는 유전자 조절 과정이다. 그중 하나가 시티딘 아세틸화(N4-acetylcytidine)라는 화학 변형인데, 지금까지는 이 화학 변형이 세포 내에서 어떤 기능을 수행하는지 정확히 알려져 있지 않았다. 특히, 인간 세포의 mRNA(단백질을 만드는 RNA)에 이 변형이 실제로 있는지, 어떤 역할을 하는지 등에 대한 논란이 이어졌다. 연구팀은 이러한 한계를 극복하기 위해 원하는 RNA만을 정밀하게 표적하는 유전자 가위인 Cas13에 RNA를 아세틸화시키는 NAT10의 고활성 변이체(eNAT10)를 결합한 ‘표적 RNA 아세틸화 시스템(dCas13-eNAT10)’을 개발했다. 즉, 원하는 RNA만 정확하게 골라서 아세틸화시키는 ‘표적 RNA 변형 기술’을 만든 것이다. 연구팀은 표적 RNA 아세틸화 시스템과 세포 내 특정 RNA를 찾아 안내하는 가이드 RNA에 의해 원하는 RNA에 아세틸화 화학 변형을 가할 수 있음을 증명했다. 이를 통해 아세틸화 화학 변형된 메신저 RNA (mRNA)에서 단백질 생산이 증가한다는 사실을 확인했다. 또한, 연구팀은 개발한 시스템을 이용해 RNA 아세틸화가 RNA를 세포핵에서 세포질로 이동시킨다는 사실을 최초로 밝혀냈다. 이번 연구는 아세틸화 화학 변형이 세포 내 RNA ‘위치 이동’도 조절할 수 있다는 가능성을 보여주는 결과다. 연구팀은 개발한 기술이 AAV(아데노-관련 바이러스)라는 유전자 치료에 널리 이용되는 운반체 바이러스를 통해 실험 쥐의 간에 전달하여 동물의 몸속에서도 정확히 RNA 아세틸화 조절이 가능할 수 있음을 입증했다. 이는 RNA를 화학 변형하는 기술이 생체 내 적용에 확장될 수 있음을 보여주는 최초의 사례다. 이는 RNA 기반 유전자 치료 기술로의 응용 가능성을 여는 성과로 평가받는다. RNA 유전자가위를 활용한 코로나 치료기술과 빛으로 RNA 유전자가위 활성화 기술을 개발하였던 허원도 교수는 “기존 RNA 화학 변형 연구는 특정성, 시간성, 공간성 조절이 어려웠지만, 이번 기술은 원하는 RNA에 선택적으로 아세틸화를 가할 수 있어 RNA 아세틸화의 기능을 정확하고 세밀하게 연구할 수 있는 길을 열였다”며, “이번에 개발한 RNA 화학 변형 기술은 향후 RNA 기반 치료제 및 생체 내 RNA 작동을 조절하는 도구로 폭넓게 활용될 수 있을 것”이라고 전했다. 우리 대학 생명과학과 유지환 박사과정이 제1 저자로 수행한 이 연구는 국제 학술지 ‘네이처 케미컬 바이올로지 (Nature Chemical Biology)’에 2025년 6월 2일 자로 게재됐다. (논문명: Programmable RNA acetylation with CRISPR-Cas13, Impact factor: 12.9, DOI: https://doi.org/10.1038/s41589-025-01922-3) 한편, 이번 연구는 삼성미래기술육성재단과 한국연구재단 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2025.06.10
조회수 3273
짠 음식의 뇌종양 악화 유발 원인 세계 최초 밝혀
짠 음식을 자주 섭취하는 식습관이 건강에 해롭다는 것은 널리 알려진 사실이다. 그런데 최근 KAIST 연구진은 짠 음식이 뇌종양까지 악화시킬 수 있다는 사실을 세계 최초로, “왜 나빠지는지", "무엇이 그 과정을 유도하는지", "어떤 유전자가, 어떤 단백질이 작용하는지"까지 분자적 인과관계를 입증해 주목받고 있다. 우리 대학 생명과학과 이흥규 교수 연구팀이 고염식이 장내 미생물 구성을 변화시키고, 이로 인해 증식이 증대된 미생물에 의해 분비되는 대사물질인‘프로피오네이트(propionate)‘가 장내에 과도하게 축적되어 뇌종양을 악화시킨다는 사실을 밝혀냈다. 연구팀은 뇌종양 마우스 모델을 이용한 실험에서 이 같은 사실을 입증했다. 마우스에게 4주간 짠 사료를 섭취하게 한 뒤 종양세포를 주입하자 일반식이 그룹에 비해 생존율이 크게 낮아지고 종양 크기가 증가하는 것을 확인했다. 이어 항생제로 장내 미생물을 제거하거나, 무균 마우스에 분변(고염사료 섭취한 사람의 대변에 해당되는 마우스 분변 샘플) 미생물을 이식하는 실험에서도 유사한 뇌종양 악화 반응이 관찰되었다. 이는 장내 미생물 변화가 뇌종양 악화의 핵심 요인임을 보여주는 증거이다. 특히, 연구팀은 장내 미생물 중 박테로이드 불가투스(Bacteroides vulgatus)라는 균이 고염식이에 따라 증가하고, 이 균이 프로피오네이트(propionate)라는 효소(Pccb)의 발현을 높인다는 사실을 발견했다. 그 결과, 장내에서 프로피오네이트 농도가 비정상적으로 상승했으며, 이 물질은 뇌종양 세포에서 산소가 충분한데도 마치 부족한 것처럼 ‘저산소유도인자-1알파(HIF-1α)’를 활성화시켰다. 이는 다시 ‘형질전환성장인자-베타(TGF-β)’를 증가시켜 제1형 콜라겐(COL1A1)을 과하게 만들게 하여 종양 세포가 더 쉽게 퍼지고 악성도를 높이게 하였다. 이러한 분자적 기전은 실제 뇌종양 중 가장 악성도가 높은 교모세포종(Glioblastoma) 환자의 암세포 데이터 분석을 통해서 임상 적용 가능성을 제시하였다. 마우스와 인간 종양세포에서 공통적으로 발현된 관련 유전자들로 인해 환자의 생존율이 낮아짐을 보여주었다. 이흥규 교수는 “이번 연구는 짠 음식 섭취가 장내 미생물 생태계를 변화시키고, 그 결과 생성된 대사산물이 뇌종양을 악화시킬 수 있음을 세계 최초로 분자 수준에서 규명한 것”이라며, “향후 뇌종양 환자를 대상으로 한 식이 조절 연구와 장내 미생물 기반 치료 전략 개발의 기초 자료로 활용될 수 있을 것”이라고 밝혔다. 공동 제1 저자로는 KAIST 김채원 박사(현. 미국 하버드 의과대학 부속 보스턴 어린이병원 박사후연구원)와 김현진 박사(KAIST 생명과학연구소 박사후연구원)가 참여했으며, 연구 결과는 생의학 분야 권위 학술지인 저널 어브 익스페리멘탈 메디슨(Journal of Experimental Medicine)에 5월 22일 자에 게재됐다. 논문 : Gut dysbiosis from high-salt diet promotes glioma via propionate-mediated TGF-β activation https://doi.org/10.1084/jem.20241135 이번 연구는 과학기술정보통신부와 한국연구재단이 지원하는 개인기초연구사업 및 바이오의료기술개발사업의 일환으로 수행됐다.
2025.06.02
조회수 1569
슈퍼박테리아 방패 ‘바이오필름’ 무력화 치료 플랫폼 개발
병원 내 감염의 주요 원인 중 하나로 알려진 슈퍼박테리아 ‘메티실린 내성 황색포도상구균(MRSA, 이하 포도상구균)’은 기존 항생제에 대한 높은 내성뿐 아니라 강력한 미생물막인 바이오필름(biofilm)을 형성함으로써 외부 치료제를 효과적으로 차단한다. 이에 우리 연구진은 국제 연구진과 함께 미세방울(microbubble)을 이용해 유전자 표적 나노입자를 전달하여 바이오필름을 무너뜨리고 기존 항생제가 무력한 감염증에 대한 혁신적 해결책을 제시하는 플랫폼 개발에 성공했다. 우리 대학 생명과학과 정현정 교수 연구팀이 미국 일리노이대 공현준 교수팀과의 공동연구를 통해, 포도상구균이 형성한 세균성 바이오필름을 효과적으로 제거하기 위해 유전자 억제제를 세균 내부로 정확하게 전달하는 미세방울 기반 나노-유전자 전달 플랫폼(BTN‑MB)를 개발했다고 29일 밝혔다. 연구팀은 먼저, 포도상구균의 주요 유전자 3종<바이오필름 형성(icaA), 세포 분열(ftsZ), 항생제 내성(mecA)>을 동시에 억제하는 짧은 DNA 조각(oligonucleotide)을 설계하고, 이를 탑재해 균내로 효과적으로 전달할 수 있는 나노입자(BTN)를 고안했다. 여기에 더해, 미세방울(microbubble, 이하 MB)을 사용해 포도상구균이 형성한 바이오필름인 미생물막의 투과성을 높인다. 연구팀은 두 가지 기술을 병용해, 세균의 증식과 내성 획득을 원천적으로 차단하는 이중 타격 전략을 구현했다. 이 치료 시스템은 두 단계로 작동한다. 먼저, 미세방울(MB)이 포도상구균이 형성한 세균성 생체막내 압력 변화로 나노입자(BTN)의 침투를 가능하게 만든다. 이어서, BTN이 생체막의 틈을 타 세균 내부로 침투해 유전자 억제제를 정확하게 전달한다. 이를 통해 포도상구균의 유전자 조절을 일으켜 생체막 재형성, 세포 증식, 그리고 항생제 내성 발현이 동시에 차단된다. 돼지 피부 감염 생체막 모델과 포도상구균 감염 마우스 상처 모델에서 시행한 실험 결과, BTN‑MB 치료군은 생체막 두께가 크게 감소했으며, 세균 수와 염증 반응도 현저히 줄어드는 뛰어난 치료 효과를 확인할 수 있었다. 이러한 결과는 기존 항생제 단독 치료로는 달성하기 어려운 수준이며, 향후 다양한 내성균 감염 치료에도 적용할 수 있는 가능성을 보여준다. 연구를 주도한 정현정 교수는 “이번 연구는 기존 항생제로는 해결할 수 없는 슈퍼박테리아 감염에 대해 나노기술, 유전자 억제, 물리적 접근법을 융합해 새로운 치료 해법을 제시한 것”이라며, “향후 전신 적용 및 다양한 감염 질환으로의 확장을 목표로 연구를 지속할 것”이라고 설명했다. 해당 연구는 우리 대학 생명과학과 정주연 학생과 일리노이대 안유진 박사가 제1 저자로 참여했으며, 국제학술지‘어드밴스드 펑셔널 머터리얼스(Advanced Functional Materials)’에 5월 19일 자로 온라인 게재됐다. ※ 논문 제목: Microbubble-Controlled Delivery of Biofilm-Targeting Nanoparticles to Treat MRSA Infection ※ DOI: https://doi.org/10.1002/adfm.202508291 한편, 이번 연구는 한국연구재단과 보건복지부의 지원을 받아 수행됐다.
2025.05.29
조회수 2796
심리적 공포기억 조절 뇌 회로 최초 규명-트라우마 치료 새 전기
자연재해, 사고, 폭력 등 위협적인 상황은 뇌에 공포 기억을 남긴다. 하지만, 과도하거나 왜곡된 공포 기억 형성은 PTSD, 불안장애, 우울증 등 심각한 정신질환으로 이어질 수 있다. 그렇다면 신체적 고통을 직접 경험했을때의 공포와, 심리적 불안으로 겪은 고통의 기억은 뇌에서 어떻게 구분되며 조절될까? KAIST 연구진은 신체적 고통 없이 심리적 불안과 공포에 의한 공포 기억 형성에 특화된 뇌 회로를 세계 최초로 규명했으며, 이 회로를 타켓으로 한 맞춤형 트라우마 치료법 개발 가능성을 열었다. 우리 대학 생명과학과 한진희 교수 연구팀은 생쥐 모델을 이용한 실험을 통해, 감각적 고통 없이 심리적 위협만으로 유도되는 공포 기억의 형성을 조절하는 핵심 뇌 회로인 pIC-PBN회로*를 규명했다. *pIC–PBN 회로: 후측 대뇌섬엽(pIC, posterior insular cortex)에서 외측 팔곁핵(PBN, parabrachial nucleus)으로 이어지는 하향 신경 경로로, 심리적 고통 정보를 전달하는 전용 회로임을 새롭게 밝혀냄 기존에는 뇌의 외측 팔곁핵(PBN)이 척수에서 통각 정보를 전달받는 통각 상행 경로의 일부로만 알려져 있었으나, 연구팀은 비통각적 위협 자극에 의해서도 PBN이 공포학습에 필수적으로 기능한다는 새로운 사실을 밝혔다. 이번 연구는 ‘정서적 고통’과 ‘신체적 고통’이 서로 다른 뇌 신경회로에 의해 처리된다는 사실을 세계 최초로 실험적으로 입증한 사례로 평가된다. 특히, 정서적 고통을 전달하는 데 특화된 신경 회로(pIC-PBN)를 명확히 제시함으로써, 신경과학 분야에서 큰 학술적 의의를 지닌다. 이번 연구의 제 1저자인 한준호 박사는 연구의 출발점을 이렇게 설명한다. “저희 강아지 ‘레고’는 오토바이를 무서워한다. 실제로 부딪치진 않았지만 오토바이가 빠르게 다가온 경험 이후로 오토바이 소리만 들어도 겁을 먹는다. 사람도 마찬가지로. 사고를 실제로 겪지 않더라도, 사고가 날 뻔한 경험이나 자극적인 미디어 노출만으로도 공포 기억이 생기고, 결국 PTSD로 이어질 수 있다.” 이어 “지금까지 공포 기억에 관한 연구는 신체적 고통에 기반한 실험에 의존해 왔으나, 실제 인간의 공포 기억은 신체적 고통보다는 심리적 위협에 의해 형성되는 경우가 훨씬 많다. 그럼에도 불구하고 이러한 심리적 위협을 처리하는 뇌 회로에 대해서는 거의 알려진 바가 없었다.” 연구팀은 심리적 위협을 처리하는 뇌 회로를 알아보기 위하여 전기 자극이 아닌 시각적 위협 자극을 사용하는 새로운 공포 조건화 실험 모델을 개발했다. 생쥐는 포식자가 위에서 빠르게 접근하는 상황에서 본능적으로 공포 반응을 보이는데, 연구팀은 이를 활용해 천장 화면에 빠르게 커지는 그림자를 제시함으로써 생쥐가 포식자에게 공격당하는 듯한 위협을 경험하게 하였다. 이 실험을 통해, 통각 없이도 심리적 위협만으로 공포 기억이 형성될 수 있음을 입증했다. 이 새로운 행동 실험 모델과 함께, 연구팀은 신경세포의 활성을 정밀하게 조절하는 화학유전학 및 광유전학 기법을 활용하여, 외측 팔곁핵(PBN)이 시각적 위협만으로도 공포 기억이 형성된다는 사실을 규명하였고 나아가 연구팀은 PBN으로 정보를 전달하는 상위 뇌 영역을 분석했다. 이에 따라, 부정적 정서와 고통 처리에 중요한 역할을 하는 후측 대뇌섬엽(pIC)이 PBN과 직접 연결되어 있음이 밝혀졌다. 특히 시각적 위협 자극 이후, pIC에서 PBN으로 신호를 보내는 뉴런들이 활성화되며, 이 신호가 PBN 뉴런의 활성에 필수적인 역할을 한다는 사실도 확인되었다. 연구 결과, pIC–PBN 회로를 인위적으로 억제하면 시각적 위협에 따른 공포 기억 형성이 현저히 감소하지만, 선천적인 공포 반응이나 통각 기반의 공포 학습에는 영향을 주지 않는다는 점도 규명했다. 반대로 이 회로를 인위적으로 활성화하는 것만으로도 공포 기억이 유도되어, pIC–PBN 회로가 심리적 위협 정보를 처리하고 학습을 유도하는 핵심 경로임이 드러났다. 한진희 교수는“이번 연구는 PTSD, 공황장애, 불안장애 등 정서적 고통을 주 증상으로 하는 정신질환의 발병 메커니즘을 이해하고, 맞춤형 치료법을 개발하는 데 중요한 토대를 마련할 것”이라고 밝혔다. 생명과학과 한준호 박사 (제 1저자), 서보인 박사과정(제 2저자)이 수행한 논문은 국제 학술지 사이언스 어드밴시스(Science Advances)에 2025년 5월 9일 자 온라인 게재되었다. ※ 논문명 : Han, J., Suh, B., & Han, J. H. (2025). A top-down insular cortex circuit crucial for non-nociceptive fear learning. Science Advances (https://doi.org/10.1101/2024.10.14.618356) ※ 저자 정보 : Junho Han(KAIST, 제1저자), Boin Suh(KAIST, 제2저자), and Jin-Hee Han(KAIST, 교신저자) 본 연구는 과학기술정보통신부 뇌과학원천기술개발사업과 뇌기능규명조절기술개발사업의 지원을 받아 수행되었다.
2025.05.15
조회수 3671
운동 중 고혈압 감지, KAIST 웨어러블 광혈압계 개발
기존 커프 방식으로 혈압을 측정할 때 팔을 압박하는 불편함이 있으며, 측정 전 최소 10분의 안정이 필요했다. 최근 스마트워치에 적용된 혈압 측정 기술 역시 고혈압이나 운동 중 정확도가 떨어지고, 연속 측정이 어렵다는 단점이 있다. KAIST 연구진이 단순 휴식 상태 뿐만 아니라 계단 오르기 등 운동 중 고혈압 감지까지도 정확하게 연속 측정이 가능한 혈압 모니터링 기술을 개발했다. 우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 수십 개의 세분화된 파장의 빛을 사용해 혈관 내 혈류 변화를 광학적으로 측정하는 혁신 방법인 초분광 PPG(광용적맥파, Photoplethysmography) 기술을 활용해 운동 상태에서의 연속 혈압 모니터링에 활용될 수 있는 웨어러블 혈압 센서를 개발하는 데 성공했다. 최근 스마트워치에서 세 가지 파장을 갖는 PPG 센서를 이용해 혈압 측정 기술을 탑재했지만, 고혈압 상태 및 운동 상태에서의 낮은 정확도와 연속적인 측정이 불가하다는 문제가 있다. 연구팀은 빛의 파장을 분석해 주는 고해상도의 초박형 마이크로분광기를 포함한 초분광 PPG 모듈을 통해 다양한 파장의 PPG 신호를 동시에 측정하고, 연속적이고 정밀한 시간차를 계산해 안정적으로 혈압을 추정할 수 있는 방식을 고안했다. 연구팀이 개발한 웨어러블 초분광 PPG 센서는 연속적으로 혈압을 모니터링할 수 있을 뿐만 아니라 심박수, 호흡률과 같은 다른 생리적 매개변수도 동시에 측정해 운동 전후의 혈압 변화를 세밀하게 분석할 수 있다. 이번 연구 결과는 운동 중 혈압 변화를 연속적으로 추적해 운동으로 유발되는 고혈압을 감지할 수 있다. 연구팀은 운동 중 회복기의 혈압 추정 정확도가 0.75 정도였던 다른 감지 방식보다 높은 0.95의 연관성 지표(최소 –1, 최대 1, 수치가 1에 가까울수록 예측이 실제값과 거의 일치)를 나타내는 등 높은 신뢰성을 증명했다. KAIST 정기훈 교수는 "이번 연구는 운동 중 측정된 고혈압 실험을 통해 얻은 새로운 데이터를 기반으로, 웨어러블 초분광 PPG 센서가 운동 중의 혈압 측정과 회복기 혈압 추적에서 중요한 역할을 할 수 있음을 증명한 사례에 해당하며, 초분광 PPG 기술은 향후 개인 맞춤형 디지털 헬스케어 분야에 크게 기여할 것”이라고 연구의 의미를 설명했다. KAIST 바이오및뇌공학과 박정우 박사 후 연구원이 주도한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스 (Advanced Science)’에 4월 25일에 게재됐다. ※ 논문명: 웨어러블 초분광 광 혈류 측정 센서를 활용한 운동 유발 고혈압 진단, Wearable Hyperspectral Photoplethysmography allows Continuous Monitoring of Exercise-induced Hypertension, https://doi.org/10.1002/advs.202417625 이 연구는 한국보건산업진흥원 한국형 ARPA-H 사업, 한국연구재단 글로벌 중견연구사업등의 지원을 받아 수행했다.
2025.05.08
조회수 2137
"파킨슨병을 편집하다” 염증 RNA 편집 효소 세계 최초 발견
파킨슨병(PD)은 알파시누클린(α-synuclein) 단백질이 뇌세포 내에서 비정상적으로 응집되어 신경세포를 손상시키는 퇴행성 신경질환이다. KAIST 연구진은 파킨슨병의 핵심 병리 중 하나인 신경염증 조절에 있어 RNA 편집(RNA editing)이 중요한 역할을 한다는 사실을 세계 최초로 밝혀냈다. 우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 UCL 국립신경전문병원 연구소 및 프랜시스 크릭 연구소와의 공동 연구를 통해, 뇌를 보호하고자 염증 반응을 일으키는 교세포(astrocyte)에 대해 RNA 편집 효소인 에이다원(ADAR1)이 면역 반응을 조절하는 중요한 역할을 한다는 것을 밝혀내고 파킨슨병의 병리 진행에 핵심적인 역할을 한다는 사실을 입증했다. 최민이 교수 연구팀은 뇌 면역세포의 염증반응을 알아보고자 파킨슨 환자에게서 유래한 줄기세포를 이용해 뇌의 신경세포를 돕는 교세포와 신경세포로 구성된 세포 모델을 만들고, 파킨슨병의 원인이 된다고 알려진 알파시뉴클레인(α-synuclein) 응집체를 처리한 뒤, 뇌 면역세포의 염증 반응이 어떻게 되는지 분석했다. 그 결과, 알파시뉴클레인 응집체 초기 병리형태인 알파시뉴클레인 단량체(oligomer)가 교세포 내 세포가 위험을 감지하는 센서처럼 작동하는 통로(Toll-like receptor) 경로 및 바이러스나 병원균과 싸우는 면역 신호 네트워크인 인터페론 반응 경로를 활성화하였다. 이 과정에서 RNA 편집 효소인 에이다원이 발현하면서 기능과 구조 등 단백질 성질이 바뀌는 아이소폼으로 변형되는것을 확인했다. 특히, 바이러스 감염시 면역 반응을 조절하기 위해 기능을 발휘하던 에이다원이 수행하는 RNA의 편집 활동이 ‘A(아데노신)’를 ‘I(이노신)’으로 바꾸는, 일종의 유전자 명령 수정 작업인 ‘A-to-I RNA 편집’이 일어난다. 이는 RNA 편집 활동이 정상적인 상황이 아니라, 염증을 일으키는 유전자들에 비정상적으로 집중되어 있다는 걸 발견했다. 이 현상은 환자 유래 줄기세포 분화 신경세포에서뿐만 아니라 실제 파킨슨병 환자 뇌의 부검 조직에서도 동일하게 관찰되었다. 이는 RNA 편집의 이상 조절이 교세포의 만성 염증 반응을 유도하고, 결과적으로 신경세포 독성과 병리 진행으로 이어질 수 있음을 직접적으로 입증한 것이다. 이번 연구는 신경 면역 세포인 교세포 내 RNA 편집 조절이 신경염증 반응의 핵심 기전이라는 사실을 새롭게 밝혔다는 데 의의가 크다. 특히 에이다원이 파킨슨병 치료의 새로운 타깃 유전자로 작용할 수 있음을 제시했다는 점에서 주목된다. 또한, 환자 맞춤형 유도 줄기세포 기반의 정밀의학적 뇌 질환 모델을 통해 실제 환자의 병리 특성을 반영한 점도 주목된다. 최민이 교수는 “이번 연구는 단백질 응집으로 인한 염증 반응의 조절자가 RNA 편집이라는 새로운 층위에서 작동함을 입증한 것으로, 기존의 파킨슨병 치료 접근과는 전혀 다른 치료 전략을 제시할 수 있다”고 밝혔다. 이어 “RNA 편집 기술은 신경염증 치료제 개발의 중요한 전환점이 될 수 있을 것”이라고 강조했다. 이번 연구에는 최민이 교수가 제1 저자로 참여했으며 사이언스 어드밴스드(Science Advances)에 4월 11일 자로 게재되었다. ※ 논문 제목: Astrocytic RNA editing regulates the host immune response to alpha-synuclein, Science Advances Vol11,Issue15 DOI:10.1126/sciadv.adp8504 ※ 주저자: Karishma D’Sa(UCL, 제1저자), Minee L. Choi(KAIST, 제1저자), Mina Ryten(UCL, 교신저자), Sonia Gandhi(크릭 연구소, 캠브리지 대학, 교신저자) 이번 연구는 한국연구재단의 뇌과학선도융합, 우수신진연구사업과 KAIST의 대교 인지 향상 프로그램의 지원을 받아 수행되었다.
2025.04.28
조회수 4575
의과학대학원 박수형 교수, SBS문화재단 그랜드 퀘스트 프라이즈 수상
우리 대학 의과학대학원 박수형 교수가 제2회 SBS문화재단 그랜드 퀘스트 프라이즈를 수상했다. 박수형 교수는 신·변종 바이러스 감염에 대한 면역반응과 백신 치료제 개발을 연구하며 감염병, 암, 자가면역질환 등 면역질환에서 병리 기전과 치료 전략을 제시해왔다. 특히, 아직 출현하지 않은 신종 바이러스에 대한 선제적 대응이라는 새로운 패러다임을 제시해 주목받았다. 박 교수는 항체와 T세포 기반 면역 반응을 통합한 범용 백신 가능성을 탐색하여 기존 기술의 한계를 극복하고 신·변종 바이러스 대응 기술력을 입증했다고 평가를 받았다. SBS문화재단 그랜드 퀘스트 프라이즈는 과학기술 난제 해결하는 신진 과학자를 발굴하고 지원하기 위해 제정되었다. 올해는 총 21명의 후보 중 도전성, 사회적 파급력, 성장 가능성을 기준으로 서울대 화학생물공학부 서상우 교수와 함께 최종 2명이 선정되었다. 4월 24일 서울 상암동 SBS 프리즘 타워에서 시상식이 진행되었다.
2025.04.25
조회수 1826
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 24