
< 사진 1. (왼쪽 뒤부터 시계방향으로) 최민기 교수, 김형준 교수, 신승재 박사과정, 이송현 박사과정 >
우리 대학 연구진이 생체 내 단백질 *촉매인 *효소를 모방해 공급자 또는 개발자가 원하는 화학반응만 선택적으로 유도하되 안정성도 갖춘 기존에 없는 새로운 개념의 산업용 촉매 개발에 성공했다.
☞ 촉매(catalyst): 자신은 변하지 않으면서 물질 간의 화학반응이 잘 일어나도록 돕는 물질. 표면에 흡착된 반응물을 생성물로 빠르게 전환해주는 역할을 한다.
☞ 효소(enzyme): 생체 내의 화학반응을 매개하는 단백질 촉매. 반응물을 전환할 수 있는 금속 촉매 활성점(active site)이 부드러운 유기 고분자인 단백질로 둘러싸인 형태를 지니고 있는데, 단백질의 구조에 따라 오직 원하는 반응물만이 활성점에 접근해 생성물로 전환될 수 있다.
생명화학공학과 최민기, 화학과 김형준 교수 공동연구팀은 실생활에 흔히 쓰이는 플라스틱, 비닐 등의 재료인 화학 원료를 만들 때, 자연계 효소와 동일한 원리로 반응물을 선택적으로 전환할 수 있는 고성능 산업용 촉매를 개발하는 데 성공했다.
한정된 자원을 효율적으로 이용하기 위해서는 다양한 화학반응 경로 중 목표하는 반응물을 원하는 생성물로 선택적으로 전환해줄 수 있는 촉매를 디자인하는 것이 매우 중요하다. 지구상에 존재하는 촉매 중 가장 효율이 좋은 촉매는 자연계 및 우리 몸 등에 존재하는 '효소'다.
이와 달리 석유화학 산업에서 이용되는 촉매들은 알루미나·실리카·제올라이트와 같이 딱딱한 무기물 표면 위에 금속을 퍼뜨려 노출한 구조로 구성돼 있다. 이런 형태의 촉매에서는 금속 표면에 모든 반응물이 흡착되기 쉬워 특정 반응물만을 선택적으로 생성물로 전환하기에는 한계가 있다. 그 럼에도 불구하고 대부분 산업용 촉매 설계에서 무기 소재를 사용하는 이유는 이들이 열화학적 안정성이 뛰어나 다양한 반응 조건에서도 촉매가 안정적으로 작용하기 때문이다.
최민기·김형준 교수 공동연구팀은 이번 연구를 통해 단백질과 같이 부드럽고 유동성이 있으면서도 매우 높은 열화학적 안정성을 지닌 `폴리페닐렌설파이드(polyphenylene sulfide, PPS)'라는 엔지니어링 플라스틱 물질을 이용해서 고분자 막이 금속촉매 활성점을 감싼 형태의 신개념 촉매를 세계 최초로 개발했다. PPS는 내열성과 내화학성이 매우 뛰어나 자동차나 항공우주 산업 등에서 많이 사용되는 상용 고분자다.
연구팀은 이 새로운 촉매를 이용해 석유화학의 에틸렌 생산 공정 중 매우 중요한 아세틸렌 수소화 반응에 적용하는 데 성공했다. 우리나라 석유화학 산업의 원료는 90% 이상이 *나프타인데, 나프타분해시설(Naphtha Cracking Center, NCC)에서 이를 분해해 에틸렌 및 기타 기초유분들을 생산하고 있다. 특히 에틸렌은 주변에 흔한 플라스틱, 비닐, 접착제, 페인트까지 일상에서 사용하는 다양한 제품을 만드는데 이용하는 기본 핵심 화학 원료다.
☞ 나프타(naphtha): 원유를 증류할 때, 35~220℃의 끓는점 범위에서 유출되는 탄화수소의 혼합체이다. 중질 가솔린이라고도 부른다.
나프타를 분해할 때 생산되는 에틸렌에는 미량의 아세틸렌이 불순물로 함께 포함돼 있다. 아세틸렌은 추후 에틸렌을 이용해 화학제품을 만드는 데 매우 치명적이므로 미량의 아세틸렌을 수소화 반응으로 제거해 주는 공정을 반드시 거쳐야 한다. 그런데 이 공정은 99% 이상 에틸렌은 건들지 않으면서도, 1% 미만의 아세틸렌만 선택적으로 전환해야 하는 난제가 존재해왔다.
공동연구팀은 새로 개발한 촉매를 이 공정에 적용한 결과 1% 미만의 아세틸렌은 금속 입자를 둘러싸고 있는 고분자막을 투과해 쉽게 전환되는 대신 99% 이상의 에틸렌은 고분자막에 가로막혀 촉매 반응이 진행되지 않아서 기존 팔라듐(Pd) 촉매와 비교할 때 선택도는 2 배 이상, 안정성은 10배 이상 증진된 놀라운 결과를 얻었다.

< 그림 1. 무기 산화물 및 유기 고분자를 이용하여 합성한 금속 촉매 모식도 >

< 그림 2. 일반적인 무기산화물(실리카)에 담지된 금속 촉매와 유기 고분자에 담지된 금속 촉매의 아세틸렌 및 에틸렌 수소화 전환율 비교 >
우리 대학 생명화학공학과 이송현, 화학과 신승재 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '사이언스 어드밴시스(Science Advances)' 7월 8일 字 온라인판에 게재됐다(논문명: Dynamic Metal-Polymer Interaction for the Design of Chemoselective and Long-Lived Hydrogenation Catalysts).
최민기 교수는 "자연계의 효소를 모방해 원하는 반응물만 선택적으로 전환할 수 있으면서도 매우 우수한 안정성을 갖는 촉매 설계 방법은 세계적으로 보고된 바가 없던 새로운 개념"이라면서 "향후 높은 선택도가 있어야 하는 다양한 화학반응에 폭넓게 응용 및 적용될 수 있을 것"이라고 전망했다.
이번 연구는 한국연구재단 중견연구자 지원사업과 LG화학의 지원으로 이뤄졌다.
우리가 먹는 비타민 B2(리보플라빈)는 음식이 몸속에서 에너지로 바뀌도록 돕는 중요한 보조효소 역할을 한다. 한국 연구진이 이 리보플라빈(플라빈)에 금속을 결합해, 전자를 전달하는 리보플라빈의 기능에 금속의 반응 조절 능력을 더한 새로운 인공 효소를 만드는 데 세계 최초로 성공했다. 이 기술은 자연 효소보다 더 정밀하고 안정적으로 작동해, 에너지 생산과 환경 정화, 신약 개발 등 다양한 분야에 활용될 가능성을 보여준다. 우리 대학 화학과 백윤정 교수 연구팀이 기초과학연구원(IBS 원장 노도영) 권성연 박사와 공동연구를 통해, 플라빈이 금속 이온과 결합할 수 있는 새로운 분자 시스템을 합성하는 데 성공했다고 11일 밝혔다. 그동안 플라빈은 질소와 산소가 복잡하게 얽힌 고리 구조를 가져 금속이 선택적으로 결합하기 어려운 구조적 한계가 있어, 과학자들은 오랫동안 ‘금속과 결합한 플라빈’을 구현하지 못했다. 연구팀은 이러한 한계를 극복하기 위해 플라빈 내에서
2025-11-11우리 대학 생명화학공학과 최민기 교수가 과학기술정보통신부와 한국연구재단이 공동 주관하는 ‘이달의 과학기술인상’을 수상한다. 이번 시상은 ‘평화와 발전을 위한 세계과학의 날(11월 10일)’을 기념해 진행된다. 이달의 과학기술인상은 최근 3년간 독창적인 연구 성과를 창출해 과학기술 발전에 공헌한 연구개발자를 매달 1명씩 선정해 과기정통부 장관상과 상금 1,000만원을 수여하는 상이다. 최민기 교수는 친환경 암모니아 합성을 위한 고성능 촉매를 개발해 탄소중립과 수소 경제 전환을 위한 핵심 기술을 마련한 공로를 인정받았다. 암모니아는 비료와 의약품 등 필수 산업 원료일 뿐 아니라 액화가 쉽고 수소 저장 밀도가 높아 재생에너지 기반 수소를 저장·운송할 수 있는 차세대 에너지 매개체로 주목받고 있다. 그러나 현재 상용화된 ‘하버-보슈 공정’은 500℃ 이상, 100기압 이상의 고온·고압이 필요해
2025-11-05AI가 스스로 새로운 소재의 구조와 성질을 상상하고 예측하는 시대가 열렸다. 이제 AI는 연구자의 ‘두 번째 두뇌’처럼 아이디어 발굴부터 실험 검증까지 연구 전 과정을 함께 수행한다. 우리 대학과 국제 공동 연구진은 AI가 자율 연구실(Self-driving Lab) 개념을 구현하고, 로봇이 촉매 합성 실험을 수행하는 ‘AI 기반 촉매 탐색 플랫폼’을 통해 신소재 연구의 전 주기 활용 전략을 제시했다. 우리 대학은 신소재공학과 홍승범 교수 연구팀이 미국 드렉셀대학교, 노스웨스턴대학교, 시카고대학교, 테네시대학교와 공동연구를 통해 인공지능(AI)·머신러닝(ML)·딥러닝(DL) 기술이 신소재공학 전반에 미치는 영향을 종합적으로 분석한 리뷰 논문을 국제 학술지 ACS Nano(영향력지수 IF=18.7)에 8월 5일자로 게재했다고 26일 밝혔다. 홍승범 교수 연구팀은 소재 연구를 ‘발견–개발&n
2025-10-27요즘 수소 같은 청정에너지를 더 효율적이고 저렴하게 만들기 위해, 적은 전력으로 성능이 뛰어난 촉매 재료를 빠르게 합성하는 기술이 중요한 연구 주제로 떠오르고 있다. 우리 대학 연구진은 빛을 단 0.02초 비추어 3,000 ℃의 초고온을 구현하고 수소 생산 촉매를 효율적으로 제작할 수 있는 플랫폼 기술을 개발했다. 이 덕분에 에너지는 1/1,000만 쓰고도, 수소 생산 효율은 최대 6배 높아졌다. 이번 성과는 미래 청정에너지 기술의 상용화를 앞당길 핵심 돌파구로 평가된다. 우리 대학은 10월 20일, 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 강력한 빛을 짧게 쬐어주는 것만으로 고성능 나노 신소재를 합성하는 ‘직접접촉 광열처리(Direct-contact photothermal annealing)’ 합성 플랫폼을 개발했다고 밝혔다. 연구팀은 빛을 아주 짧게(0.02초) 비추는 것만으로 순간적으로 3,000 ℃의 초고온을 만들어내
2025-10-20수소전기차의 핵심인 연료전지 작동 중 촉매의 ‘열화 과정(어떻게 망가지고 성능이 떨어지는지)’을 우리 연구진이 국제연구진과 함께 세계 최초로 원자 단위에서 3차원으로 직접 추적하는 데 성공했다. 이번 성과는 고성능·고내구성 연료전지 개발을 앞당겨 미래 친환경 교통수단과 에너지 전환에 크게 기여할 것으로 기대된다. 우리 대학 물리학과 양용수 교수와 신소재공학과 조은애 교수 공동연구팀이 미국 스탠퍼드대학교, 로런스 버클리 국립연구소와의 국제 공동연구를 통해 연료전지 촉매 내부의 원자 하나하나가 수천 번의 작동 사이클 동안 어떻게 움직이고, 어떤 방식으로 성능이 저하되는지를 3차원으로 직접 추적하는 데 성공했다고 14일 밝혔다. 수소연료전지는 탄소배출이 없는 차세대 친환경 에너지 기술로 주목받고 있다. 그러나 촉매로 사용되는 백금(Pt) 기반 합금은 주행 과정에서 성능이 점차 저하되는 ‘열화 현상’이 발생해 상용화의 걸림돌
2025-09-15