< 사진 1. (왼쪽 뒤부터 시계방향으로) 최민기 교수, 김형준 교수, 신승재 박사과정, 이송현 박사과정 >
우리 대학 연구진이 생체 내 단백질 *촉매인 *효소를 모방해 공급자 또는 개발자가 원하는 화학반응만 선택적으로 유도하되 안정성도 갖춘 기존에 없는 새로운 개념의 산업용 촉매 개발에 성공했다.
☞ 촉매(catalyst): 자신은 변하지 않으면서 물질 간의 화학반응이 잘 일어나도록 돕는 물질. 표면에 흡착된 반응물을 생성물로 빠르게 전환해주는 역할을 한다.
☞ 효소(enzyme): 생체 내의 화학반응을 매개하는 단백질 촉매. 반응물을 전환할 수 있는 금속 촉매 활성점(active site)이 부드러운 유기 고분자인 단백질로 둘러싸인 형태를 지니고 있는데, 단백질의 구조에 따라 오직 원하는 반응물만이 활성점에 접근해 생성물로 전환될 수 있다.
생명화학공학과 최민기, 화학과 김형준 교수 공동연구팀은 실생활에 흔히 쓰이는 플라스틱, 비닐 등의 재료인 화학 원료를 만들 때, 자연계 효소와 동일한 원리로 반응물을 선택적으로 전환할 수 있는 고성능 산업용 촉매를 개발하는 데 성공했다.
한정된 자원을 효율적으로 이용하기 위해서는 다양한 화학반응 경로 중 목표하는 반응물을 원하는 생성물로 선택적으로 전환해줄 수 있는 촉매를 디자인하는 것이 매우 중요하다. 지구상에 존재하는 촉매 중 가장 효율이 좋은 촉매는 자연계 및 우리 몸 등에 존재하는 '효소'다.
이와 달리 석유화학 산업에서 이용되는 촉매들은 알루미나·실리카·제올라이트와 같이 딱딱한 무기물 표면 위에 금속을 퍼뜨려 노출한 구조로 구성돼 있다. 이런 형태의 촉매에서는 금속 표면에 모든 반응물이 흡착되기 쉬워 특정 반응물만을 선택적으로 생성물로 전환하기에는 한계가 있다. 그 럼에도 불구하고 대부분 산업용 촉매 설계에서 무기 소재를 사용하는 이유는 이들이 열화학적 안정성이 뛰어나 다양한 반응 조건에서도 촉매가 안정적으로 작용하기 때문이다.
최민기·김형준 교수 공동연구팀은 이번 연구를 통해 단백질과 같이 부드럽고 유동성이 있으면서도 매우 높은 열화학적 안정성을 지닌 `폴리페닐렌설파이드(polyphenylene sulfide, PPS)'라는 엔지니어링 플라스틱 물질을 이용해서 고분자 막이 금속촉매 활성점을 감싼 형태의 신개념 촉매를 세계 최초로 개발했다. PPS는 내열성과 내화학성이 매우 뛰어나 자동차나 항공우주 산업 등에서 많이 사용되는 상용 고분자다.
연구팀은 이 새로운 촉매를 이용해 석유화학의 에틸렌 생산 공정 중 매우 중요한 아세틸렌 수소화 반응에 적용하는 데 성공했다. 우리나라 석유화학 산업의 원료는 90% 이상이 *나프타인데, 나프타분해시설(Naphtha Cracking Center, NCC)에서 이를 분해해 에틸렌 및 기타 기초유분들을 생산하고 있다. 특히 에틸렌은 주변에 흔한 플라스틱, 비닐, 접착제, 페인트까지 일상에서 사용하는 다양한 제품을 만드는데 이용하는 기본 핵심 화학 원료다.
☞ 나프타(naphtha): 원유를 증류할 때, 35~220℃의 끓는점 범위에서 유출되는 탄화수소의 혼합체이다. 중질 가솔린이라고도 부른다.
나프타를 분해할 때 생산되는 에틸렌에는 미량의 아세틸렌이 불순물로 함께 포함돼 있다. 아세틸렌은 추후 에틸렌을 이용해 화학제품을 만드는 데 매우 치명적이므로 미량의 아세틸렌을 수소화 반응으로 제거해 주는 공정을 반드시 거쳐야 한다. 그런데 이 공정은 99% 이상 에틸렌은 건들지 않으면서도, 1% 미만의 아세틸렌만 선택적으로 전환해야 하는 난제가 존재해왔다.
공동연구팀은 새로 개발한 촉매를 이 공정에 적용한 결과 1% 미만의 아세틸렌은 금속 입자를 둘러싸고 있는 고분자막을 투과해 쉽게 전환되는 대신 99% 이상의 에틸렌은 고분자막에 가로막혀 촉매 반응이 진행되지 않아서 기존 팔라듐(Pd) 촉매와 비교할 때 선택도는 2 배 이상, 안정성은 10배 이상 증진된 놀라운 결과를 얻었다.
< 그림 1. 무기 산화물 및 유기 고분자를 이용하여 합성한 금속 촉매 모식도 >
< 그림 2. 일반적인 무기산화물(실리카)에 담지된 금속 촉매와 유기 고분자에 담지된 금속 촉매의 아세틸렌 및 에틸렌 수소화 전환율 비교 >
우리 대학 생명화학공학과 이송현, 화학과 신승재 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '사이언스 어드밴시스(Science Advances)' 7월 8일 字 온라인판에 게재됐다(논문명: Dynamic Metal-Polymer Interaction for the Design of Chemoselective and Long-Lived Hydrogenation Catalysts).
최민기 교수는 "자연계의 효소를 모방해 원하는 반응물만 선택적으로 전환할 수 있으면서도 매우 우수한 안정성을 갖는 촉매 설계 방법은 세계적으로 보고된 바가 없던 새로운 개념"이라면서 "향후 높은 선택도가 있어야 하는 다양한 화학반응에 폭넓게 응용 및 적용될 수 있을 것"이라고 전망했다.
이번 연구는 한국연구재단 중견연구자 지원사업과 LG화학의 지원으로 이뤄졌다.
우리 대학 물리학과 양용수 교수 연구팀이 인공신경망을 이용한 주사투과전자현미경(STEM) 기반 원자분해능 전자토모그래피 기술을 개발, 이를 적용해 백금 나노입자 표면과 내부의 3차원 원자 구조를 15 pm(피코미터)의 정밀도로 규명했다. 1 pm(피코미터)는 1 미터의 1조 분의 일에 해당하는 단위로, 15 pm의 정밀도는 수소 원자 반지름의 약 1/3 정도에 해당하는 매우 높은 수준이다. 전자토모그래피는 전자현미경으로 다양한 각도에서 측정된 2차원 투영된 이미지로부터 3차원 이미지를 얻어내는 기술이다. 최근 주사투과전자현미경과 3차원 토모그래피 재구성 알고리즘의 기술 발전으로 전자토모그래피의 분해능은 단일 원자까지 구분할 수 있는 수준에 이르렀다. 이를 통해 많은 나노물질의 구조와 물성의 근본적인 이해가 가능해졌다. 그러나 일반적인 전자토모그래피 실험에서는 시편을 탑재한 홀더 또는 그리드가 전자빔을 가리게 되는 실험적 제약으로 인해 고 각도(약 75도 이상)의 이미지 측정이
2021-04-05우리 대학 백무현 화학과 교수(IBS 부연구단장)가 2021년 포스코청암상 수상자로 선정됐다. 백 교수는 전이금속 촉매를 매개로 일어나는 화학반응의 반응 원리를 밝히고, 더 나은 촉매개발을 가능하게 하는 원리를 정립한 화학자다. 특히 컴퓨터와 이론·계산화학 연구 방법을 이용하여 화학반응을 예측하고 설계할 수 있음을 실증한 변혁적 연구의 선구자다. 2016년에 계산화학으로 메탄가스를 활성화시킬 수 있는 촉매 후보 물질을 예측했고, 2020년에는 유기화합물의 전기적 성질을 결정짓는 원자단을 전압의 미세한 차이를 이용해 자유자재로 조절할 수 있는 ‘만능 작용기’의 가능성을 제시했다. 특히 만능 작용기 연구는 기존의 패러다임을 대체할 수 있는 혁신적 성과라는 높은 평가를 받고 있으며, 향후 연구성과가 화학산업에 적용될 경우 파급효과가 클 것으로 기대되고 있다. 포스코청암상은 과학, 교육, 봉사, 기술 4개 부문을 시상하며 부문별로 상금 2
2021-03-02우리 연구진이 금속-산화물 계면에서의 촉매 화학 반응 과정에 대한 메커니즘을 직접 밝히고, *핫전자(뜨거운 전자)가 촉매 선택도를 향상시키는 데 결정적인 요소임을 실시간 핫전자 검출을 통해 입증했다. ☞ 핫전자(Hot electron): 분자의 흡착, 화학 촉매 반응, 빛의 흡수와 같은 외부 에너지가 금속 표면에 전달될 때, 화학 에너지의 순간적인 전환과정에서 에너지가 올라간(물질의 자유전자보다 약 100배 높은) 상태의 전자를 말한다. 태양광을 전기에너지로 전환하는 데 사용되는 매개체로도 사용된다. 우리 대학 화학과 박정영 교수(기초과학연구원(IBS) 나노물질 및 화학반응 연구단 부연구단장), 신소재공학과 정연식 교수, 생명화학공학과 정유성 교수 공동연구팀이 차세대 고성능 촉매 설계에 활용할 수 있는 반응성 향상 원리의 기틀을 마련했다고 8일 밝혔다. 현재 에너지 사용량 절감과 친환경 화학 공정 개발이라는 글로벌 도전 과제를 해결하기 위해 새로운 고효율 촉매 소재 개발은
2021-01-11우리 대학 신소재공학과 정우철 교수가 대전컨벤션센터에서 2020년 11월 23일 한국세라믹학회 2020년 추계학술대회에서 수여하는 젊은 세라미스트상 수상자로 선정됐다. 젊은 세라미스트상은 한국세라믹학회에서 수여하는 최고 영예의 상으로, 지난 5년간 세라믹 연구 분야에 탁월한 업적을 가진 전도가 유망한 젊은 연구자에게 수여된다. 정우철 교수는 산화물 반도체를 활용한 촉매 분야 연구에 매진하여, 연료전지, 수소 개질기 및 가스 센서에 필요한 촉매 및 박막 소재를 개발하는 등 세라믹 분야 학술 발전에 기여한 공로를 인정받아 이 상을 수상하게 된다. 이번 세라믹학회에서는 정우철 교수 외에도 신소재공학과 소속 학생 8명이 참여해 양송포스터상 최우수 논문(김현승, 김상우, 김승현 박사과정), 양송포스터상 우수 논문(김용범 석사과정) 등 4건의 상을 수상했다.
2020-11-30삼성미래기술육성사업이 지원하고 우리 대학이 POSTECH, GIST 등 국내 과학기술특성화대학 공동 연구진과 협업해 온 *엑솔루션 연구가 결실을 맺었다. ☞ 엑솔루션(Ex-solution): 금속 및 금속산화물 고용체를 가열해 성분을 분리하고, 이를 통해 실시간으로 금속 나노 입자 촉매를 금속산화물 표면에 균일하면서도 강하게 결착시키는 기법이다. 특별한 공정 과정 없이 열처리만을 활용하기에 친환경적인 미래 기술로 주목받고 있다. 우리 대학 신소재공학과 김일두 교수·정우철 교수 연구팀이 POSTECH 한정우 교수팀과 GIST 김봉중 교수팀과의 공동연구를 통해 단 한 번의 열처리로 금속산화물 감지 소재 표면에 나노촉매를 자발적으로 형성시켜 황화수소 기체만 선택적으로 감지하는 고 안정성 센서를 개발했다고 24일 밝혔다. 나노입자 촉매를 금속산화물에 형성하기 위한 기존 방식들은 진공을 요구하거나 여러 단계의 공정이 필요하기 때문에 시간과 비용이 많이 들뿐더러 촉매가 쉽
2020-11-24