< 생명화학공학과 이재형 교수, 노고산 박사 >
우리 연구진이 독일 전문 연구진과 협력 연구를 통해 지구온난화의 주범 기체인 이산화탄소 활용 기술을 평가하는 방법을 국제 학술지에 발표했다. 이산화탄소 활용을 위한 신기술을 개발 중인 단계에서 연구의 효율성과 경제성을 사전에 파악할 수 있기 때문에 유망 신기술 발굴에 크게 도움을 줄것으로 기대된다.
우리 대학 이재형 생명화학공학과 교수 연구팀이 아직 상용화가 안되거나 개발단계에 있는 이산화탄소 활용 기술을 사전에 분석하고 평가하는 툴(Tool)을 개발했다고 22일 밝혔다. 이번 연구는 이재형 교수 연구실 노고산 박사가 제1 저자로 참여했으며 녹색·지속가능 기술 분야 국제 학술지인 ‘녹색 화학(Green Chemistry)’ 온라인에 지난달 21일 게재됐다. (논문명: Ealry-stage evaluation of emerging CO₂ utilization technologies at low technology readiness levels)
다양한 신흥(emerging) 녹색 기술을 연구하는 과정에서는 해당 기술이 과연 유망한 기술인지, 아닌지를 사전에 판단해 연구 인력과 예산을 집중하는 것은 매우 중요하다. 예를 들어, 해당 기술의 에너지 효율이 얼마나 높은지, 또는 향후 비용경쟁력을 확보할 수 있는지, 그리고 기술 도입이 환경에 얼마나 큰 영향을 미칠지를 사전에 분석할 수 있어야 한다. 하지만 연구개발 초기 단계에서는 관련 기술에 대한 정보력 부족으로 정확한 기술 분석이나 평가를 하기가 어렵다.
이재형 교수 연구팀이 개발한 이 툴은 상용화가 안 돼 있거나 개발단계에 있는 이산화탄소 활용 기술을 대상으로 구체적이고 세부적인 정보가 없이 일부 제한적인 정보만으로도 해당 기술의 에너지 효율과 기술 경제성, 온실가스 저감 잠재량 등을 파악할 수 있다는 게 장점이다.
이 교수팀은 특히, 이번 연구에서 기술 평가에 필요한 지표 계산이 가능하도록 해당 기술이 지니는 고유의 기술성숙도(Technology readiness level)와 다양한 이산화탄소 전환 특성 등 체계적이고 세분된 전략을 제시했다. 연구팀은 이와 함께 개발한 툴 검증을 위해 다양한 이산화탄소 활용 기술들을 대상으로 사례 연구를 수행했다고 밝혔다.
이번 연구는 이 교수팀과 독일 아헨공과대학교(RWTH Aachen University)에서 공정 설계와 최적화 분야 전문가로 꼽히는 알렉산더 밋소스(Alexander Mitsos) 교수, 이산화탄소 포집 및 활용 기술의 모든 과정을 평가(Life Cycle Assessment)하는 분야의 전문가인 안드레 바도우(André Bardow)교수, 그리고 분리막과 전기화학 분야 전문가인 마티아스 웨슬링(Matthias Wessling)교수 연구팀과 긴밀한 협력을 통해 이뤄졌다.
< 그림 1. 미성숙 기술의 평가 지표 계산을 위한 3단계 분석 전략 >
< 그림 2. 열 가지 전기화학 전환 기반의 이산화탄소 활용 기술을 분석한 결과 >
이재형 교수는 "이번 연구성과는 현재 전 세계에서 연구되고 있는 다양한 이산화탄소 활용 기술에 적용이 가능하다ˮ고 말했다. 이 교수는 이어 "아직 상용화가 안 돼 있거나 개발 중인 미성숙 기술을 대상으로 에너지 효율과 비용대비 경제성 등을 정확하게 평가할 수 있어 유망 신기술에 연구개발 인력과 비용을 집중할 수 있다”라고 강조했다.
한편, 이번 연구는 한국 이산화탄소 포집 및 처리 연구개발센터(KCRC)의 지원을 받아 수행됐다.
전 세계적으로 기후변화 문제가 심각해짐에 따라 이를 기후 위기로 인식하고 이에 대응하는 적극적인 관심과 노력이 요구되고 있다. 그중 이산화탄소를 활용해 재자원화하는 여러 방법 중에서 전기화학적 이산화탄소 전환 기술은 전기에너지를 이용해 이산화탄소를 유용한 화학물질로 전환할 수 있는 기술이다. 이는 설비 운용이 용이하고, 태양 전지나 풍력에 의해 생산된 재생 가능한 전기에너지를 이용할 수 있으므로 온실가스 감축 및 탄소 중립 달성에 기여하는 친환경 기술로 많은 관심을 받고 있다. 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀이 전기화학적 이산화탄소 전환과 미생물 기반의 바이오 전환을 연계한 하이브리드 시스템을 개발해 이산화탄소로부터 높은 효율로 바이오 플라스틱을 생산하는 기술 개발에 성공했다고 30일 밝혔다. 유사한 시스템 대비 20배 이상의 세계 최고 생산성을 보여준 해당 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 3월 27일 字
2023-03-30우리 대학 문술미래전략대학원(건설및환경공학과 겸임) 김형준 교수가 국제 공동 연구를 통해 과거 50여 년간 관측된 동아시아 지역의 태풍에 의한 호우 빈도의 증가가 인간 활동에 의한 기후변화의 영향이었음을 지구 메타버스 기술을 이용해 처음으로 증명했다고 29일 밝혔다. 김형준 교수의 이번 연구 결과는 국제 학술지 ‘네이처 기후변화 (Nature Climate Change)’4월 28일 판에 출판됐다. (논문명: Observed influence of anthropogenic climate change on tropical cyclone heavy rainfall; doi:10.1038/s41558-022-01344-2) 태풍에 의해 초래되는 호우는 홍수나 산사태 등의 재해를 일으키고 지역의 생태계에도 영향을 주는 등 인간 사회 있어서 커다란 위협 중 하나라고 할 수 있다. 태풍에 의한 호우의 빈도가 과거 몇십 년간 변화되어 온 사실은 세계 각지에서 보고돼왔
2022-05-02우리 대학 생명화학공학과 이재우 교수 연구팀이 페로브스카이트* 상에서 발생하는 이산화탄소의 열화학적 환원반응의 기작을 규명하고, 반응을 최적화하기 위한 요인을 다변화하는 데에 성공했다고 13일 밝혔다. ☞ 페로브스카이트: ABO3 (A = 란탄족, B = 전이금속)의 분자식을 가진 입방체 구조의 산화금속으로 차세대 태양전지에 응용되는 물질로 알려져 있다. 이 교수 연구팀은 이산화탄소의 환원반응 성능을 예측하기 위해, 기존에 주로 활용돼왔던 산소 공공 형성 에너지 계산 외에도 수소 흡착에너지, 이온 전도도 및 이산화탄소의 흡착상태를 분석해 성능 예측의 정확도를 더욱 높일 수 있다는 것을 확인했다. 연구팀이 다변화에 성공한 요인을 통해, 탄소중립 실현을 개발될 다분야의 이산화탄소 전환 및 환원 촉매의 성능을 더욱 정확하게 예측할 수 있을 것으로 기대된다. 우리 대학 생명화학공학과 임현석 박사와 김이겸 박사과정이 공동 제1 저자로 참여하고 영남대학교 화학공학부 강도형 교수 연
2021-10-13우리 대학은 7월 18일(일)부터 22일(목)까지 5일간 `제18회 이산화탄소 활용에 관한 국제학술대회(18th International Conference on Carbon Dioxide Utilization, 이하 ICCDU 2021)'를 개최한다. 기후변화에 대응하기 위한 ‘이산화탄소의 포집 및 활용 기술’을 주제로 열리는 이번 학술대회에는 미국 공학한림원 회원인 이산화탄소 전환 부분의 세계적인 학자인 량시판(L.S. Fan) 오하이오 주립대학 교수와 이상엽 우리 대학 연구부총장을 포함해 재료공학·화학·생명화학공학 분야의 세계적인 석학 31명이 강연자로 참여하며, 온라인 화상회의 프로그램인 줌(Zoom)을 통해 진행된다. 이산화탄소 활용에 관한 국제학술 대회 (ICCDU)는 탄소 포집, 저장 및 활용에 관한 연구를 위해 1991년 설립되어 국·내외 저명한 석학들이 참하는 정보 교류의 장으로 자리매김했다. 이번
2021-07-19우리 대학 생명화학공학과 고동연 교수 연구팀이 에너지 집약 산업체의 이산화탄소 배출량을 줄이는 동시에 산업 부산물을 유용한 자원으로 전환하는 신개념 고체 탄산화 시스템을 개발했다고 23일 밝혔다. 연구팀이 개발한 이 시스템은 *중공사막 형태의 `초투과성 분리막'을 이용해 연속적으로 이산화탄소 포집과 전환이 가능하기 때문에 탄소 배출량을 대량으로 줄일 수 있다. ☞ 중공사막: 가운데가 비어있는 형태의 막. 인공 신장 투석기나 정수기 따위의 여과재로 사용된다. 생명화학공학과 황영은 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `ACS 서스테이너블 케미스트리 앤드 엔지니어링(ACS Sustainable Chemistry & Engineering)' 10월호에 실렸는데 연구의 파급력을 인정받아 표지논문으로 선정됐다. (논문명 : Solid Carbonation via Ultrapermeable PIM-1 Hollow Fiber Membranes for S
2020-11-23