< 신소재공학과 신종화 교수, 장태용 박사과정 >
우리 연구진이 동물 뼈가 그의 구성성분인 단백질보다 수천 배 단단할 수 있는 생체역학적 원리를 모사해 광학적 비선형성이 기존 물질 대비 수천에서 수십억 배나 큰 신물질을 개발했다.
비선형성이란 입력값과 출력값이 비례관계에 있지 않은 성질인데 광학에서 큰 비선형성을 확보할 경우, 빛의 속도로 동작하는 인공 신경망이나 초고속 통신용 광 스위치 등의 광소자를 구현할 수 있다.
우리 대학 신소재공학과 신종화 교수 연구팀은 벽돌을 엇갈려 담을 쌓는 것과 같이 나노 금속판을 3차원 공간에서 엇갈리게 배열하면 물질의 광학적 비선형성이 매우 크게 증대될 수 있음을 확인했다. 신종화 교수 연구팀이 이번 연구를 통해 발견한 비선형성 증대원리는 광학뿐만 아니라 역학, 전자기학, 유체역학, 열역학 등 다양한 물리 분야에도 적용이 가능하다.
KAIST 신소재공학과 장태용 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `커뮤니케이션즈 피직스(Communications Physics)' 5월 8일 字 온라인판에 게재됐다. (논문명 : Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity).
영화 스타워즈의 광선 검처럼 잘 제어된 빛을 만드는 것이나 빛만으로 구동되는 광컴퓨터를 만드는 것은 비선형성을 이용할 때 가능한데, 아직 실현되지 않고 있는 이유는 강한 비선형성을 가진 소재가 없기 때문이다. 자연 물질의 작은 비선형성으로도 초고속 광소자, 3차원 광식각 공정, 초 고분해능 현미경 등의 기술들이 구현될 수 있지만, 이들은 크고 비싼 고출력 레이저를 사용하거나, 큰 장비 혹은 소자가 필요하다는 공통적인 한계를 지니고 있다.
이를 극복하기 위해 기존에는 미세한 인공 구조체를 설계해서 그 틈에 빛을 모으는 방법이 많이 시도돼왔다. 비선형성은 빛의 세기에 비례하기 때문에 이 같은 방법을 이용하면 같은 부피의 자연 물질 대비 작은 빛의 세기로 비슷한 수준의 비선형 효과를 얻을 수 있다. 그러나 최대로 얻을 수 있는 비선형 효과의 크기는 결국 달라지지 않기 때문에 응용하는데 한계가 있다.
신 교수 연구팀은 물질의 근본적인 전기적 특성인 유전분극(물체가 전기를 띠는 현상)을 매우 크게 조절하는 방법을 고안했다. 나노 금속판이 3차원에서 엇갈려 배열돼있으면 국소분극이 공간을 촘촘하게 채우면서, 마치 시냇물이 모여서 강이 되듯, 전체적으로 매우 큰 분극을 만들게 된다는 점에 착안했다. 빛의 세기가 아닌 분극의 크기를 조절해 큰 비선형성 및 비선형 효과를 얻는 방법은 이번 신 교수 연구팀이 이번 연구에서 처음 제시한 개념인데 비선형 광학이 60년 동안 달성하고자 했던 고효율의 작은 비선형 광소자 개발에 한 발 더 다가선 것으로 평가되고 있다.
연구팀은 이번에 고안한 메타물질(자연계에 존재하지 않는 특성을 구현하기 위해 매우 작은 크기로 만든 인공 원자의 주기적인 배열로 이루어진 물질)이 시간적으로 짧은 광신호에 대해서도 큰 비선형 효과를 얻을 수 있음을 통해 기존보다 효율적이면서도 더 빠른 광소자 구현이 가능함을 확인했다. 이 연구에서 활용된 소자는 비슷한 신호 시간을 가지는 기존 소자보다는 에너지 효율이 약 8배나 뛰어나고 비슷한 에너지 효율을 가지는 기존 소자보다도 신호 시간은 약 10배 정도 짧다. 즉, 신호의 시간과 소요되는 에너지의 곱으로 표현되는 성능 기준으로 보면, 이 소자는 현재까지 개발된 광소자 중 가장 우수한 성능을 보였다.
연구팀은 또 고안한 메타물질이 광학 이외의 물리 현상에도 적용될 수 있음을 입증했다. 연구팀은 단백질의 단단함 대비 뼈의 단단함을 설명하는 모델이 이번 연구에서 고안한 광학적 비선형성 증대원리와 수학적으로 매우 유사함을 증명했다. 따라서 유체역학에서의 물질전달률, 열역학에서의 열전도율 등의 증대에도 신 교수 연구팀의 연구방법이 적용될 수 있을 것으로 기대된다.
< 그림 1. 광학적 거대 비선형성을 갖는 메타물질과 동물 뼈의 구조 비교: 동물 뼈의 일부 구조에는 부드러운 단백질 망에 단단한 미네랄 판이 엇갈려 배열되어있다. 본 연구에서의 메타물질은 자연의 비선형 물질 내부(그림에는 표시되지 않음)에 나노 금속판이 엇갈려서 배열돼있다. 이들의 물리량 증대원리는 수학적으로 매우 비슷하다. >
< 그림 2. 본 연구에서의 메타물질의 비선형 특성을 나타낸 도식: 기존 메타물질의 경우 비선형성은 커지지만 같은 부피의 자연계 물질 대비 최대로 얻을 수 있는 비선형 분극의 크기는 비슷한 수준이다. 이번 연구에서는 비선형성뿐만 아니라 비선형 분극 최대값을 높인 최초의 메타물질을 개발했다. >
신종화 교수는 "올해는 지난 1960년 레이저가 발명된 지 60년이 되는 해로, 레이저의 발명이 `센 빛'을 최초로 만든 것이라면 이번 연구성과는 `센 물질', 즉 광대역에서 매우 큰 유전분극 증대율을 보이는 물질을 최초로 발견하고 증명한 연구라는 점에서 의미가 크다ˮ며 "기계학습을 위한 초고속 인공 신경망 등 다양한 광 응용 소자의 구현을 위해 후속 연구를 진행 하고 있다ˮ고 말했다.
한편 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
우리 대학 기계공학과 전원주 교수 연구팀이 전기차의 저주파 대역 노면 소음과 고주파 대역 모터 소음을 동시에 차단할 수 있는 신개념 음향 메타물질 기반 초경량 차음 메타패널을 개발했다고 18일 밝혔다. 음향 메타물질은 자연계에 존재하지 않는 음향학적 유효 물성(음의 질량, 음의 강성 등)을 갖도록 인공적으로 설계된 구조물로, 음향 은폐, 고투과-고집속, 완벽 차음/흡음 등 기존 재료로는 구현이 어려운 성능을 달성할 수 있는 특징이 있다. 내연기관을 대신해 전기모터를 동력원으로 사용하는 전기차는 기존의 내연기관 자동차에서 시끄럽다고 느끼던 엔진 소음이 더는 발생하지 않는다. 하지만, 엔진 소음에 의한 마스킹 효과가 사라지면서 오히려 저주파 대역의 노면 소음이 상대적으로 더 크게 들리거나 엔진을 대신하는 전기모터의 고주파 소음이 또렷하고 거슬리게 들리기도 한다. 미래 모빌리티의 한 축을 담당하고 있는 전기차가 단순히 하나의 운송 수단을 넘어 이동 중 휴식이나 레저 및 업무
2022-10-18〈 웡 지징 박사 〉 ‘제13회 KAIST 조정훈 학술상’ 수상자로 미국 UC 버클리大 웡 지징(Wong, Zi Jing) 박사가 선정됐다. 웡 박사는 광학 메타물질 분야에서 Zero 굴절율 구현, 굴절율의 조작, 3D 투명 망토 구현 등 국제적으로 인정받는 우수한 연구업적과 함께 세계 최고의 권위를 자랑하는 과학저널인 사이언스(Science)와 네이처 포토닉스(Nature Photonics)에 각각 3편과 2편의 연구논문을 발표한 공로를 인정받았다. 웡 박사는 이와 함께 미국 재료연구학회가 주는 최우수 대학원생 연구상(MRS Graduate Student Award-Gold medal) 등 국제적으로 저명한 다수의 학회로부터 베스트 논문상을 수상했다. 우리대학은 웡 박사 외에 항공우주공학과 박사과정 김현탁씨를 비롯, 고려대 기계공학과 석·박사 통합과정 박호성, 공주사대부고 최형진 등 학생 3명을 장학생으로 선발하고 이들에게 12일 오전
2017-05-12우리 학교 기계공학전공 민범기 교수는 자연에 존재하지 않는 인공적인 메타물질*을 통해 빛의 편광을 광대역에서 제어하는데 성공했다. *메타물질 : 자연계에 존재하지 않는 특성을 구현하기 위해 빛의 파장보다 작은 인공원자로 구성된 물질 향후 이 기술을 활용해 광대역 통신 및 디스플레이에 적용 가능한 다양한 광대역 광소자가 개발될 수 있을 것으로 기대된다. 레이저와 같이 편광돼 있는 빛으로 어떠한 물질이나 구조를 분석할 때는 일반적으로 빛의 편광 상태에 따라 결과가 달라지기 때문에 광학 실험실에서는 여러 가지 방법으로 빛의 편광을 조절해 사용한다. 이때 흔히 사용되는 것이 파장판이나 광활성 물질인데 이러한 광학 소자들의 성능은 파장에 따라 크게 달라지기 때문에 광대역에서 빛의 편광 조절기로 사용하기에는 한계가 있었다. 최근까지 강한 공진을 갖는 메타물질을 통해 매우 큰 광활성을 보이는 인공 물질을 개발하려는 연구가 활발히 진행돼 왔으나, 공진 주파수 부근에서 필연적으로 나타나
2014-11-25민범기 교수 - Nature Materials 발표,“그래핀과 자체 개발한 메타물질 결합, 다양한 광소자 개발 가능” 자연에 존재하는 2차원 물질인 그래핀*과 국내 연구진이 자체 개발한 인공적인 2차원 메타물질**을 결합해 빛의 투과도를 효과적으로 제어할 수 있다는 사실이 밝혀짐에 따라, 광메모리 등 다양한 그래핀 광소자*** 개발의 전망이 밝아졌다. * 그래핀(Graphene) : 탄소원자가 육각형 벌집모양을 이루는 2차원 평면에 펼쳐진 얇은 막 구조 ** 메타물질(Metamaterials) : 자연계에 없는 특성을 갖도록 고안된 빛의 파장보다 훨씬 작은 인공 원자로 구성된 물질 *** 광소자(Optical Devices) : 빛의 생성, 검출, 변조 및 제어 등을 할 수 있는 소자 우리 학교 기계공학전공 민범기 교수(39세), 이승훈 박사생(제1저자, 30세), ETRI 최무한 박사(제1저자, 41세) 및 김튼튼 박사(제
2012-10-17- 세계 최고 권위 『네이처』지 발표, “전자기파나 광파의 경로를 마음대로 제어하는 초소형 광학소자 개발 가능”- 국내 연구진이 자연계에 존재하지 않는 높은 굴절률*을 갖는 메타물질을 이론적으로 검증하고 이를 실험적으로 구현하는데 성공하였다. * 굴절률(index of refraction) : 서로 다른 매질의 경계면을 통과하는 파동이 굴절되는 정도 또는 투명한 매질로 빛이 진행할 때, 빛의 속도(광속) 이 줄어드는 비율 우리학교 민범기 교수(교신저자, 37세), 최무한 박사(제1저자, 39세) 및 이승훈 박사과정생(제1저자, 29세)의 주도 하에, 한국전자통신연구원(ETRI) 강광용 박사팀, KAIST 이용희 교수팀, 서울대 박남규 교수팀이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 일반연구자지원사업(신진연구)의 지원을 받아 수행되었다. 이번 연구결과는 세계 최고 권위의 과학 전문지인 &l
2011-02-16