< 신소재공학과 강정구 교수, 최원호 박사과정 >
우리 연구진이 공기 중에 널리 퍼져있는 산소로 충전되는 차세대 배터리인 리튬-공기 배터리의 에너지 저장 소재를 개발했다. 기존 리튬-이온 배터리에 비해 약 10배 큰 에너지 밀도를 얻을 수 있어 친환경 전기자동차용 배터리에 널리 쓰일 것으로 기대된다.
우리 대학 신소재공학과 강정구 교수가 숙명여대 화공생명공학부 최경민 교수 연구팀과 공동연구를 통해 원자 수준에서 촉매를 제어하고 분자 단위에서 반응물의 움직임 제어가 가능해 차세대 배터리로 주목받는 리튬-공기 배터리용 에너지 저장 전극 소재(촉매)를 개발했다.
연구팀은 이번 소재개발을 위해 기존 나노입자 기반 소재의 한계를 극복하는 원자 수준의 촉매를 제어하는 기술과 금속 유기 구조체(MOFs, Metal-Organic Frameworks)를 형성해 촉매 전구체와 보호체로 사용하는 새로운 개념을 적용했다. 금속 유기 구조체는 1g만으로도 축구장 크기의 넓은 표면적을 갖기 때문에 다양한 분야에 적용 가능한 신소재다.
이와 함께 물 분자의 거동 메커니즘 규명을 통해 물 분자를 하나씩 제어하는 기술도 함께 활용했다. 이 결과, 합성된 원자 수준의 전기화학 촉매는 금속 유기 구조체의 1nm(나노미터) 이하 기공(구멍) 내에서 안정화가 이뤄져서 뛰어난 성능으로 에너지를 저장한다는 사실을 밝혀냈다.
KAIST 신소재공학과 최원호 박사과정이 제1 저자로 참여한 이 연구결과는 재료 분야 저명 국제 학술지 `어드밴스드 사이언스 (Advanced Science)' 5월 6일 字에 게재됐다. (논문명 : Autogenous Production and Stabilization of Highly Loaded Sub-Nanometric Particles within Multishell Hollow Metal-Organic Frameworks and Their Utilization for High Performance in Li-O2 Batteries)
리튬-이온 배터리는 낮은 에너지 밀도의 한계로 인해 전기자동차와 같이 높은 에너지 밀도를 요구하는 장치들의 발전 속도를 따라잡지 못하고 있다. 이를 대체하기 위해 다양한 종류의 시스템들이 연구되고 있는데 이 가운데 높은 에너지 밀도의 구현이 가능한 리튬-공기 배터리가 가장 유력한 후보로 꼽힌다. 다만 리튬-공기 배터리는 사이클 수명이 매우 짧아서 이를 개선하기 위해 공기 전극에 촉매를 도입하고 촉매 특성을 개선하려는 연구가 활발히 진행되고 있다. 공동연구팀은 원자 수준의 촉매 도입 후 사이클 수가 3배 정도 증가하는 결과를 얻었다.
또 촉매의 경우 크기가 1nm(나노미터) 이하로 작아지면 서로 뭉치는 현상이 발생해서 성능이 급격하게 떨어진다. 공동연구팀은 이런 문제 해결을 위해 원자 수준 촉매 제어기술을 사용했는데 물 분자가 금속 유기 구조체의 1nm(나노미터) 이하의 공간에서 코발트 이온과 반응해 코발트 수산화물을 형성했고, 그 공간 내부에서도 안정화를 이뤘다. 안정화가 이뤄진 코발트 수산화물은 뭉침 현상이 방지되고, 원자 수준의 크기가 유지되기 때문에 활성도가 향상되면서 리튬-공기 배터리의 사이클 수명 또한 크게 개선되는 결과를 얻었다.
< 그림 1. 금속-유기 구조체를 통과한 물이 원자 수준의 촉매를 기공 내에서 생성하고 안정화하는 과정(개략도) >
< 그림 2. 금속-유기 구조체로부터 생성된 촉매가 기공 내에 안정화하는 과정(개략도) >
강정구 교수는 "금속-유기 구조체 기공 내에서 원자 수준의 촉매 소재를 동시에 생성하고 안정화하는 기술은 수십만 개의 금속-유기 구조체 종류와 구현되는 촉매 종류에 따라 다양화가 가능하다ˮ면서 "이는 곧 원자 수준의 촉매 개발뿐만 아니라 다양한 소재개발 연구 분야로 확장할 수 있다는 의미ˮ라고 설명했다.
한편 이번 연구는 과학기술정보통신부의 글로벌프론티어사업 및 수소에너지혁신기술개발사업의 지원을 받아 수행됐다.
대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은
2023-12-06연료전지는 부산물로 물 만을 배출하는 친환경적인 에너지 변환 장치로, 다양한 연료전지 중 양성자 교환막 연료전지(PEMFC)는 수송용 및 발전용 연료전지로 현재 상용화가 진행 중이다. 다만 연료전지의 촉매로 사용되는 백금 촉매는 자원의 희소성으로 인한 높은 가격 때문에 대량 생산 및 전 세계적인 보급에 문제점을 갖고 있었다. 우리 대학 생명화학공학과 이진우 교수 연구팀이 국민대학교 장세근 교수 연구팀, 서강대학교 백서인 교수 연구팀과 공동연구를 통해 비백금계 촉매 기반 고 전력밀도의 양성자 교환막 연료전지를 개발했다고 7일 밝혔다. 상대적으로 다른 비 백금계 촉매들에 비해 좋은 성능을 가진다고 알려져 백금을 대체하고 기존 연료전지 비용을 줄이기 위한 가장 유력한 후보 물질로 주목받아 온 M-N-C계 촉매는 PEMFC 연료전지에서 높은 전력밀도를 구현하는 데는 많은 한계가 있었다. 이진우 연구팀은 기존 백금 촉매를 대체할 수 있는 비 백금계 Fe-N-C 촉매의 높은 성능
2023-11-07우리 대학 신소재공학과 김상욱 교수 연구팀이 인공지능(Artificial Intelligence, 이하 AI)이 불러온 4차 산업혁명 이후를 뜻하는 포스트 AI시대의 핵심 신소재를 전망하는 초청논문을 발표했다고 6일 밝혔다. 대화형 AI인 `챗GPT(ChatGPT)'가 월간 사용자 1억 명을 두 달 만에 달성하는 등 AI는 우리 생활에 한층 가까이 다가왔다. 4차 산업혁명의 핵심 기술인 AI는 인간의 지능을 모사해 데이터를 학습하고 이에 따라 합리적인 의사결정을 내릴 수 있다. 단순 반복적인 작업을 대체하는데 머물렀던 과거 인공지능 기술들과 달리, 더욱 어렵고 복잡한 작업을 효율적으로 수행할 수 있어 의료, 자율 주행 자동차, 로보틱스 등의 분야에서 새로운 기술 혁신을 이루고 있다. 최근에는 사물인터넷(IoT) 기술의 발전과 함께 현실 세계의 다양한 사물과 개체들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 포스트 AI 시대에는 AI가 다양한 기기들과 결합해 우리
2023-11-06자연에 풍부한 탄화수소를 원료로 페니실린 등 항생제를 합성할 수 있는 새로운 촉매가 나왔다. 우리 대학 화학과 장석복 특훈교수(기초과학연구원 (IBS) 분자활성 촉매반응 연구단장) 연구팀은 서상원 전(前) 기초과학연구원 차세대 연구 리더(現 DGIST 화학물리학과 교수)와의 협업으로 경제적인 니켈 기반 촉매를 이용해 탄화수소로부터 항생제 원료물질인 ‘카이랄 베타-락탐’을 합성하는 화학반응을 개발했다. 1928년 영국의 생물학자인 알렉산더 플레밍은 푸른곰팡이에서 인류 최초의 항생제인 페니실린을 발견했다. 이후 1945년 영국 화학자 도로시 호지킨이 베타-락탐으로 불리는 고리 화합물이 페니실린을 구성하는 주요 구조임을 밝혀냈다. 베타-락탐은 탄소 원자 3개와 질소 원자 1개로 이루어진 고리 구조(4원환 구조)로 페니실린 외에도 카바페넴, 세팔렉신과 같은 주요 항생제의 골격이기도 하다. 페니실린 구조 규명 덕분에 인류는 베타-락탐 계열의 항생제를 화학적으로 합
2023-08-25미래 에너지원으로 주목받고 있는 수소 연료전지를 기존 귀금속 백금 소재 대비 1,000배 이상 저렴한 소재로 개발하여 화제다. 우리 대학 신소재공학과 조은애 교수 연구팀이 POSTECH 화학공학과 한정우 교수 연구팀과 공동연구를 통해 백금을 대체할 수 있는 비귀금속 촉매를 개발하고, 해당 소재의 고활성 메커니즘을 규명하는 데 성공했다고 22일 밝혔다. 수소차에 사용되는 양이온 교환막 연료전지(proton exchange membrane fuel cell, PEMFC)는 전극 촉매로 많은 양의 백금 촉매를 사용한다. 특히, 연료전지 공기극에서의 전기화학 반응은 속도가 매우 느려, 이를 높이기 위해 전극에 많은 양의 백금 촉매가 필요하다. 공동연구팀은 백금을 대체할 수 있는 공기극용 ‘단일 원자 철-질소-탄소-인 소재’를 개발하고, 활성 메커니즘을 규명했다고 밝혔다. 이 촉매는 상용제품에 적용되고 있는 양이온 교환막 연료전지(PEMFC) 뿐만 아니라
2023-08-23