본문 바로가기 대메뉴 바로가기

연구

딥러닝 통해 MRI 다중 대조도 영상 복원 기법 개발​
조회수 : 2028 등록일 : 2020-03-27 작성자 : 홍보실

도원준 박사, 서성훈 박사과정, 박성홍 교수

< 도원준 박사, 서성훈 박사과정, 박성홍 교수 >

바이오및뇌공학과 박성홍 교수 연구팀이 자기공명영상장치(MRI)의 다중 대조도 영상을 복원하기 위한 새로운 딥러닝 네트워크를 개발했다이번 연구를 통해 병원에서 반복적으로 획득하는 다중 대조도 MRI 영상을 얻는 시간이 크게 줄어 편의성 증대, 촬영비용 절감 등의 효과를 볼 것으로 기대된다.

도원준 박사가 1 저자로, 서성훈 박사과정이 공동 1 저자로 참여한 이번 연구는 우수성을 인정받아 국제 학술지 메디컬 피직스 (Medical Physics)’ 20203월호 표지 논문으로 게재됐다.

일반적으로 임상적 환경에서 MRI 촬영은 정확한 진단을 위해 두 개 이상의 대조도로 진행돼 촬영시간이 길어진다. 이에 따라 MRI 촬영비용도 비싸지며 환자들의 불편함을 유발하고, 영상의 품질 역시 환자의 움직임 등으로 인해 낮아질 수 있다.

문제 해결을 보완하기 위해 박 교수 연구팀은 다중 대조도 획득의 특징을 활용한 새로운 딥러닝 기법을 개발해 기존 방식보다 데이터를 적게 수집하는 방식으로 MRI 영상획득 시간을 크게 단축했다MRI 영상에서 데이터를 적게 수집하는 것은 영상의 주파수 영역에서 이뤄지며, 일반적으로 위상 인코딩의 개수를 줄이는 것으로 영상획득 시간을 감소시키는 것을 뜻한다. 영상획득 시간은 줄어든 인코딩 개수의 비율만큼 줄어들게 되며, 이번 연구에서는 촬영시간을 최대 8배까지 줄여 영상을 복원했다.

연구팀은 임상에서 정확한 진단을 위해 MRI 영상을 다중 대조도로 얻는다는 점을 활용해 복원의 효율을 높였으며, 실제로 데이터를 얻을 당시의 전략을 고려해 네트워크들을 따로 개발했다구체적으로 다중 대조도 전체 프로토콜의 촬영시간을 모두 줄이는 네트워크(X-net)하나의 프로토콜은 전체 인코딩 데이터를 획득하고 나머지 프로토콜들은 촬영시간을 크게 줄이는 네트워크(Y-net)를 따로 개발해 MRI 다중 대조도 영상을 촬영하는 목적에 맞춰 다르게 최적화했다.

박성홍 교수는 병원에서 반복적으로 시행하는 다중 대조도 MRI 촬영의 특성을 잘 살려서 성능을 극대화한 딥러닝 네트워크의 개발에 의의가 있다라며, “병원에서 환자의 MRI 촬영시간을 줄이는 데 도움을 줄 것으로 기대한다라고 말했다.

서울대학교병원 최승홍 교수와 공동연구로 진행한 이번 연구는 한국연구재단과 한국보건산업진흥원의 지원을 받아 수행됐다.

메디컬 피직스 2020년 3월호 표지

< 메디컬 피직스 2020년 3월호 표지 >

새롭게 개발한 X-net 과 Y-net 의 모식도

< 새롭게 개발한 X-net 과 Y-net 의 모식도 >

관련뉴스