- 바이오에너지-바이오석유화학물질 생산 핵심 대사공학 기술의 최근 연구 동향 발표
- 오는 14일(목) 오후 1시20분, KAIST 응용공학동 영상강의실
우리 학교 바이오융합연구소와 BK21 화학공학사업단은 ‘대사공학 심포지움’을 오는 14일(목), KAIST 응용공학동 영상강의실에서 개최한다.
고유가와 지구온난화 등 환경문제가 심화되면서 바이오매스로부터 화학물질을 생산하는 바이오리파이너리 프로그램과 바이오에너지 생산에 대한 연구가 전 세계적으로 진행되고 있다.
이 심포지움에는 7명의 국내 전문가가 바이오에너지와 바이오석유화학물질의 효율적인 생산을 위한 핵심 대사공학 전략과 최근 연구 동향에 대해 발표한다.
심포지움 주제 발표 내용은 ▲바이오에너지와 바이오석유화학물질 생산을 위한 대사공학(생명화학공학과 이상엽 특훈교수) ▲탄소 4개로 이루어진 핵심 화학물질을 생산하기 위한 인공 대사회로의 설계와 검증(한국화학연구원 조광명 박사) ▲새로운 화학물질을 생산하기 위한 아이소프레노이드 대사경로의 이용과 대사공학 전략(아주대학교 이평천 교수) ▲시스템생물학을 접목한 대사공학과 바이오리파이너리에 적용 전략(성균관대학교 진용수 교수) ▲생명체의 조절네트워크를 분석 응용하여 대사공학에 접목시키는 전략(고려대학교 오민규 교수) ▲대사공학적으로 개량된 대장균을 이용하여 바이오에탄올을 생산하는 전략(서강대학교 이진원 교수) ▲미생물의 디자인을 위한 대사공학과 합성생물학 전략(포항공대 정규열 교수) 등이다.
이 심포지움은 원유에 의존하던 화학, 에너지, 물질 생산을 재생 가능한 바이오매스 자원으로부터 효율적으로 생산하는데 필수적인 대사공학 기술의 최신 연구 동향을 살펴볼 수 있는 좋은 기회다.
기후 변화와 환경 문제가 심각해짐에 따라 나일론을 포함한 다양한 고분자들의 친환경 생산에 관한 관심이 빠르게 증가하는 추세다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 한태희 박사가 `나일론-5의 단량체인 발레로락탐을 생산하는 미생물 균주 개발'에 성공했다고 10일 밝혔다. 발레로락탐(valerolactam)은 나일론-5 및 나일론 6,5의 중요한 단량체다. 나일론-5와 나일론 6,5는 역사가 가장 오래된 합성섬유인 나일론의 일종으로, 나일론-5는 탄소 5개짜리 단량체로 이루어진 고분자, 나일론 6,5는 탄소 6개와 5개짜리의 두 가지 단량체로 이루어진 고분자를 말한다. 이는 우수한 가공성과 가볍고 질긴 특징으로 인해 의류뿐 아니라 배드민턴 라켓 줄, 어망, 텐트, 그리고 기어 부품 등 산업 전반에 활용되고 있다. 또한 단량체란 이러한 고분자를 만드는 재료이며, 단량체들을 서로 연결해 고분자를 합성하는 원리다. 석유 화학 기반의 화학적 발레로락탐 생산은 극한 반
2023-08-10수십 년 동안 전 세계 인구 증가에도 불구하고 기후변화 및 이상기후의 심화로 인한 식량 생산성 감소와 전쟁 등의 국제적 분쟁으로 인한 식량 공급망의 파괴는 식량부족과 영양 불평등 문제를 심화시키며 세계적인 식량 위기를 가시화하고 있다. 그러나 아이러니하게도 다른 한편에서는 환경과 지속가능성에 대한 인식이 고조됨에 따라 보다 친환경적이면서 고품질을 자랑하는 식품 및 미용품에 대한 수요 증가가 동시에 관찰되고 있다. 미생물은 이러한 다면적인 문제들을 동시에 풀어낼 수 있는 열쇠로서 주목받고 있다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘식품 및 화장품 생산을 위한 미생물의 시스템 대사공학’논문을 발표했다고 26일 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 생명공학 리뷰(Nature Reviews Bioengineering)’의 초청으로 준비한 것으로 동료심사를 거쳐 온라인 게재
2023-07-26우리 대학 생명화학공학과 이상엽 특훈교수가 6월 11일~15일 싱가포르에서 개최 중인 제15차 국제 대사공학학회(International Metabolic Engineering Conference, 회장 MIT Kristala Prather교수)에서 현지 시각으로 6월 11일 개막 기조 강연 (opening plenary lecture)를 하였다고 밝혔다. 전 세계 28개국에서 671명의 전문가와 학생들이 참가하는 본 학술대회는 코로나로 인해 이번에 5년 만에 대면으로 개최되었으며 학술대회가 시작한 지 25년을 맞이하게 되었다. 이 교수는 ‘박테리아의 시스템 대사공학’을 주제로 한 기조 강연에서 석유화학산업으로 생산하던 다양한 화학물질들과 플라스틱, 그리고 식물 등으로부터 극소량만 추출 가능하던 천연물질들, 그리고 자연에 존재하지 않지만 인류의 건강과 편리를 위하여 요구되는 비천연물질들을 박테리아의 시스템 대사공학에 의해 효율적으로 생산하는 전략들과 예들
2023-06-12우리 대학 이상엽 특훈교수(연구부총장)가 세계적인 생명공학 회사인 노보자임(Novozymes) 社의 2023년 화학 및 바이오화학공학 연구의 세계적 선도 공로 노보자임 상(Novozymes Award on Excellence in Chemical and Biochemical Engineering)을 수상했다고 5일 밝혔다. 세계적인 생명공학 회사인 노보자임은 덴마크 공과대학(Technical University of Denmark, DTU)과 함께 시스템 대사공학의 창시자이자 세계적 권위자인 KAIST 이상엽 특훈교수에게 2023년 6월 2일 덴마크 공과대학에서 열린 시상식에서 상패 및 상금을 수여했다. 이상엽 특훈교수는 바이오 화학공학 분야에서 세계적 선두주자다. 그는 업스트림(upstream)과 다운스트림(downstream)을 통합·최적화하는 것을 목적으로, 합성생물학, 대사공학, 시스템 생물학 등을 통합한 ‘시스템 대사공학(systems meta
2023-06-05박테리아는 우리 일상에서 김치, 된장, 술 등 식품에 활용되어 왔을 뿐만 아니라 최근에는 대사 공학을 통해 플라스틱, 영양제, 사료, 의약품 등을 생산하는 산업용 세포 공장으로 활약하고 있다. 하지만 유익한 박테리아 외에도 다양한 감염성 질병을 일으키는 폐렴균, 살모넬라균 등 병원균이 있어 대사공학적 기법을 통해 유해한 병원균은 병원성을 억제하거나 사멸을 유도하고, 유익한 산업용 박테리아는 고부가가치 물질을 고효율로 생산할 수 있도록 조작하는 것이 중요하다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다고 10일 밝혔다. 해당 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)'에 4월 24일 字 온라인 게재됐다. ※ 논문명 : Targeted and high-throughput gene knoc
2023-05-10