〈 김지한 교수 연구팀 〉
우리 대학 생명화학공학과 김지한 교수 연구팀이 인공지능을 활용해 원하는 물성의 다공성 물질을 역설계하는 방법을 개발했다.
김백준, 이상원 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 1월 3일 자 온라인판에 게재됐다. (논문명 : Inverse Design of Porous Materials Using Artificial Neural Networks)
다공성 물질은 넓은 표면적과 풍부한 내부 공극(孔劇)을 가지고 있어 촉매, 기체 저장 및 분리, 센서, 약물 전달 등 다양한 분야에서 활용되고 있다.
기존에는 이러한 다공성 물질을 개발하기 위해 반복적인 실험을 통한 시행착오를 거치면서 시간과 비용이 많이 소모됐다. 이러한 낭비를 줄이기 위해 가상 구조를 스크리닝해 다공성 물질 개발을 가속화 하려는 시도들이 있었지만, 데이터베이스에 존재하지 않는 새로운 구조를 발견하지 못한다는 문제가 있었다.
최근에는 인공지능 기반의 역설계로 원하는 물성을 가진 물질을 개발하는 연구가 주목받고 있지만, 지금까지의 연구들은 단순한 소형 분자들 위주로 적용되고 있으며 복잡한 다공성 물질을 설계하는 연구는 보고되지 않았다.
김지한 교수 연구팀은 인공지능 기술과 분자 시뮬레이션 기술을 활용해 다공성 물질의 한 종류인 제올라이트 구조를 설계하는 방법을 개발했다.
연구팀은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)과 기존 분자 시뮬레이션에서 활용되는 3차원 그리드 데이터를 활용해 복잡한 다공성 물질의 특성을 인공지능이 학습하고 생성할 수 있도록 구조를 개발했다.
개발된 인공신경망 생성모델은 3차원 그리드로 이루어진 구조 정보와 흡착 물성 데이터를 같이 학습하게 되며, 학습 과정 안에서 흡착 물성을 빠르게 계산할 수 있다. 이를 통해 에너지 저장 소재의 특성을 효율적으로 학습할 수 있음을 증명했다.
또한, 연구팀은 인공지능 학습 과정에서 기존의 알려진 제올라이트 구조 중 일부를 제외해 학습시켰고, 그 결과 인공지능이 학습하지 않았던 구조들도 생성할 수 있음을 확인했다.
김지한 교수는“인공지능을 이용해 다공성 물질을 설계한 최초의 사례이다”라며 “기체 흡착 용도에 국한된 것이 아니라 다른 물성에도 쉽게 적용할 수 있어 촉매, 분리, 센서 등 다른 분야의 물질 개발에도 활용될 것으로 기대한다”라고 말했다.
이번 연구는 BK21, 한국연구재단 중견 연구자 지원 사업 그리고 에너지 클라우드 사업단의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 인공지능 기반 다공성 물질(제올라이트) 생성 개요도
우리 대학은 9월 21일 9시 30분(현지 시각) 미국 뉴욕시의 뉴욕대(이하 NYU) 폴슨센터에서 이종호 과학기술정보통신부 장관, 린다 밀스(Linda G. Mills) NYU 총장, 이광형 우리 대학 총장 등이 참석한 자리에서 NYU-KAIST 글로벌 인공지능(이하 AI) & 디지털 거버넌스 컨퍼런스(Digital Governance Conference)를 개최했다. 이 자리에서 KAIST와 NYU는 국내외 AI 및 디지털 석학, 교수 및 학생 등 총 300여 명이 모인 가운데 ‘글로벌 AI와 디지털 거버넌스'에 대한 방향과 정책을 논의했다. 이번 컨퍼런스는 AI와 디지털 기술의 새로운 방향 모색과 함께 규제에 대한 공감대를 모으는 국제적 논의 마당이었다. 이광형 총장의 환영사 및 이종호 과학기술정보통신부 장관 축사에 이어서 프린스턴대와 옥스퍼드대를 졸업하고 현재 NYU 교수 겸 바이오윤리 센터장 매튜 리아오 교수(Prof. Matthew Liao)의
2023-09-22최근 유전공학 기술의 발전으로 형광현미경을 활용해 살아있는 생체조직 내 신호를 형광신호로 변환하여 연속적으로 촬영하고 측정하는 기술들이 개발되어 활용되고 있다. 그러나, 생체조직에서 방출되는 형광신호가 미약하기 때문에 빠르게 변화하는 신경세포의 전기신호 등의 신호를 측정할 경우, 매우 낮은 신호대잡음비를 가지게 되어 정밀한 측정이 어려워지게 된다. 우리 대학 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 10배 이상 정밀하게 생체 형광 신호 측정을 가능하게 하는 인공지능(AI) 영상 분석 기술을 개발했다고 20일 밝혔다. 윤 교수 연구팀은 별도의 학습 데이터 없이, 낮은 신호대잡음비를 가지는 형광현미경 영상으로부터 데이터의 통계적 분포를 스스로 학습해 영상의 신호대잡음비를 10배 이상 높여 생체신호를 정밀 측정할 수 있는 기술을 개발했다. 이를 활용하면 각종 생체 신호의 측정 정밀도가 크게 향상될 수 있어 생명과학 연구 전반과 뇌 질환 치료제 개발에 폭넓게 활용
2023-09-20우리 대학 산업디자인학과 강이연 교수가 영국 하원 의회 소속 문화, 미디어, 스포츠 위원회(Culture, Media and Sport Committee, 이하 DCMS 위원회)의 초청을 받아 참여한 「연결된 기술: 인공지능과 창의기술 보고서(Connected tech: AI and creative technology Report」가 지난달 30일 발행됐다. 강 교수는 국제적으로 활동하는 미디어 아티스트이자 연구자, 교육자로서 지난해 11월 DCMS 위원회의 공청회(Enquiry Evidence Session)에 참여했으며, 이 보고서는 당시의 논의를 토대로 작성됐다. 해당 공청회는 영국 정부 부처와 국회의원들이 관심 있는 분야의 전문가를 초청해 의견을 듣는 공식회의로 이 자리에서 나온 전문가들의 의견은 추후 정책 수립에 반영이 된다. 강이연 교수는 '연결된 기술: 현명한가 사악한가?(Connected tech: smart or sinister?)'라는 주제로 열린 세션에 참여
2023-09-08우리 대학이 다음 달 1일부터 두 달간 광화문 광장 해치마당에서 인공지능을 활용한 시각 영상 작품을 전시한다. 산업디자인학과 이창희 교수팀(아트: 송유택, 오주원, 이정아, 김대욱. 보조: 이윤지, 조해나)이 제작한 '서브웨이 시냅스(Subway Synapse)'라는 제목의 작품은 서울시가 주최하는 '하이 에이아이(Hi, Ai)'의 일환으로 전시된다. 첨단 기술을 어려운 매체예술이 아닌 이해하기 쉬운 시민 친화적 미술 작품으로 전시하기 위해 기획된 행사다. 이 교수팀의 작품은 서울의 지하철이 단순한 이동 수단을 넘어 인간의 신경세포를 연결하는 시냅스(Synapse)처럼 우리의 일상을 밀접하게 연결한다는 영감을 바탕으로 만들어졌다. 서울의 여러 공간과 모습을 연결하는 하나의 완전한 시스템으로서의 지하철을 두 개의 영상을 합성하는 크로마키 기법으로 촬영한 후 다양한 생성 인공지능 기술로 상상력을 더해 시각화했다. 자연, 번잡한 거리, 현대적인 스카이라인, 우리나라의 특색있는
2023-08-30파킨슨병 같은 만성 퇴행성 뇌 질환의 경우, 생존 환자의 뇌세포에 직접 접근이 제한적이기 때문에, 뇌 질환 환자의 세포 데이터를 토대로 환자 질병의 메커니즘 하위 유형을 인공지능으로 예측하는 것은 시도된 바가 없다. 우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 프랜시스 크릭 연구소(Francis Crick Institute)와의 공동 연구로 파킨슨병 환자의 개인별 질병 하위 유형을 예측하는 인공지능 기반의 플랫폼을 개발했다고 15일 밝혔다. 최민이 교수 연구팀이 개발한 플랫폼은 파킨슨병 환자의 역분화 만능 줄기세포(hiPSC)에서 분화된 신경 세포의 핵, 미토콘드리아, 리보솜 이미지 정보만 학습해 파킨슨 환자의 병리적 하위 유형을 정확하게 예측한다. 이 기술을 활용하면 환자별로 다르게 나타나는 파킨슨병 양상을 겉으로 보이는 발현형이 아닌 생물학적 메커니즘별로 분류할 수 있다. 이를 통해 원인 미상의 파킨슨병 환자가 속한 분자 세포적 하위 유형별로 진단이 가능해져
2023-08-16