〈 김상현 교수 연구팀(왼쪽 위 두번째 김상현 교수) 〉
우리 대학 전기및전자공학부 김상현 교수 연구팀이 반도체 공정 기술을 활용해 기존 마이크로 LED 디스플레이의 해상도 한계를 극복할 수 있는 6만 ppi(pixel per inch) 이상의 초고해상도 디스플레이 제작 가능 기술을 개발했다.
금대명 박사가 1 저자로 참여한 이번 연구는 국제학술지 ‘나노스케일(Nanoscale)’ 12월 28일자 표지 논문으로 게재됐다. (논문명 : Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding interface-engineered vertical stacking and surface passivation).
디스플레이의 기본 단위인 LED 중 무기물 LED는 유기물 LED보다 높은 효율, 높은 신뢰성, 고속성을 가져 마이크로 크기의 무기물 LED를 픽셀 화소로 사용하는 디스플레이(마이크로 LED 디스플레이)가 새로운 디스플레이 기술로 주목받고 있다.
무기물 LED를 화소로 사용하기 위해서는 적녹청(R/G/B) 픽셀을 밀집하게 배열해야 하지만, 현재 적색과 녹색, 청색을 낼 수 있는 LED의 물질이 달라 각각 제작한 LED를 디스플레이 기판에 전사해야 한다. 따라서 마이크로 LED 디스플레이에 관련한 대부분 연구가 이런 패키징 측면의 전사 기술 위주로 이루어지고 있다.
그러나 수백만 개의 픽셀을 마이크로미터 크기로 정렬해 세 번의 전사과정으로 화소를 형성하는 것은 전사 시 사용하는 LED 이송헤드의 크기 제한, 기계적 정확도 제한, 그리고 수율 저하 문제 등 해결해야 할 기술적 난제들이 많아 초고해상도 디스플레이에 적용하기에는 한계가 있다.
연구팀은 문제 해결을 위해 적녹청 LED 활성층을 3차원으로 적층한 후, 반도체 패터닝 공정을 이용해 초고해상도 마이크로 LED 디스플레이에 대응할 수 있는 소자 제작 방법을 제안함과 동시에 수직 적층시 문제가 될 수 있는 색의 간섭 문제, 초소형 픽셀에서의 효율 개선 방안을 제시했다.
연구팀은 3차원 적층을 위해 기판 접합 기술을 사용했고, 색 간섭을 최소화하기 위해 접합 면에 필터 특성을 갖는 절연막을 설계해 적색-청색 간섭 광을 97% 제거했다.
이러한 광학 설계를 포함한 접합 매개물을 통해 수직으로 픽셀을 결합해도 빛의 간섭 없이 순도 높은 픽셀을 구현할 수 있음을 확인했다. 연구팀은 수직 결합 후 반도체 패터닝 기술을 이용해 6만 ppi 이상의 해상도 달성 가능성을 증명했다.
또한, 초소형 LED 픽셀에서 문제가 될 수 있는 반도체 표면에서의 비 발광성 재결합 현상을 시간 분해 광발광 분석과 전산모사를 통해 체계적으로 조사해 초소형 LED의 효율을 개선할 수 있는 중요한 방향성을 제시했다.
김상현 교수는 “반도체 공정을 이용해 초고해상도의 픽셀 제작 가능성을 최초로 입증한 연구로, 반도체와 디스플레이 업계 협력의 중요성을 보여주는 연구 결과이다”라며 “후속 연구를 통해 초고해상도 미래 디스플레이의 기술 개발에 힘쓰겠다”라고 말했다.
이번 연구는 한국연구재단 이공분야 기초연구사업 기본연구, 기후변화대응기술개발사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 1um 크기를 가진 마이크로 단일 LED 가 실제로 배열된 모습을 보여주는 이미지, 1 um, 0.6 um 크기를 가진 LED를 광 여기 방법을 통해 적색 발광이 되는 모습을 보여주는 이미지(작은 사진). 이는 작아진 LED에서도 적색 발광특성이 잘 발현됨을 보여줌.
그림 2. 나노스케일 커버 이미지: 본 제작 방법의 사용 예시를 보여줌
디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에
2023-09-26전기자동차에서 볼 수 있는 고용량 배터리에 사용되고 있는 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 갖고 있으나, 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 배터리 수명에 악영향을 미치고 있다. 이를 해결하기 위해서 단일벽 탄소나노튜브를 소량 첨가해 수명 특성이 향상되는 결과를 얻었는데, 이런 향상이 어떻게 가능한지 나노스케일에서 영상화한 연구 결과가 공개됐다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해 배터리의 수명 특성 향상 메커니즘 영상화 결과를 국제학술지‘에이씨에스 에너지 레터스(ACS Energy Letters, Impact Factor: 22)’에 게재했다고 19일 밝혔다. (논문명: Spatially Uniform Lithiation Enabled by Single-Walled Carbon Nanotubes) 연구팀은 이전에는 실리콘 활물질이 충&midd
2023-09-19스티로폼 입자들이 작은 눈보라를 만들었다가 관람객이 가까이 다가오면 순간적으로 큰 눈보라로 소용돌이쳤다. 마치 눈 내리는 공간에 있는 듯한 몰입적 경험을 할 수 있는 미디어아트 작품이 개발되어 화제다. 우리 대학 산업디자인학과 이우훈 교수 연구팀이 공기의 흐름을 제어해 스티로폼 알갱이의 집산(흩어짐과 모임)을 통해 그래픽 이미지를 표시하는 신개념 기계식 디스플레이‘스노우 디스플레이’를 개발했다고 14일 밝혔다. 연구팀이 개발한 디스플레이 시스템은 스티로폼 입자들을 수용하는 챔버(공간), 챔버 안에서 스티로폼 입자를 날려 흩트리는 부양 팬, 입자들을 흡착하여 거르는 검정색 메쉬 패브릭 스크린, 공기 통로 개폐장치, 배기 팬 등으로 구성된다. 부양 팬들을 작동시켜 스티로폼 입자의 흩어짐과 모임을 반복하며 원하는 그래픽 이미지를 표시한다. 무작위한 입자의 흩날림으로부터 일순 질서 있는 이미지가 생성되는 시각효과는 기존 대안 디스플레이에서는 보기 드문 마법
2023-09-14디스플레이 패널에 들어가는 수많은 픽셀은 빛을 낼 수 있는 발광 소재들을 고해상도로 패터닝(patterning) 함으로써 얻어진다. 특히, 증강현실/가상현실용 근안(near-eye) 디스플레이의 경우 우수한 화질을 얻기 위해서는 기존 디스플레이 이상의 초고해상도 픽셀 패턴이 반드시 필요하다. 우리 대학 신소재공학과 조힘찬 교수 연구팀(공동저자 강정구 교수 연구팀)이 발광성 나노소재의 높은 발광 효율을 유지하며 초고해상도 패턴을 제작하는 패터닝 기술을 개발했다고 17일 밝혔다. 높은 색 순도와 발광 효율로 인해 차세대 발광체로 주목받고 있는 양자점(퀀텀닷)이나 페로브스카이트 나노결정과 같은 용액공정용 나노소재들의 경우, 고유의 우수한 광학적 특성을 유지하면서 균일한 초고해상도 패턴을 제작하는 것이 어렵기 때문에 이를 극복할 수 있는 새로운 소재 및 공정 기술을 개발하는 것이 차세대 디스플레이 구현에 있어서의 필수 요소라고 할 수 있다. 조 교수 연구팀은 양자점과 페
2023-08-17우리 대학 전기및전자공학부 유승협 교수 연구팀이 경상국립대학교(총장 권순기) 화학과 김윤희 교수 연구팀과의 협력을 통해, 세계 최고 수준의 높은 효율을 갖는 진청색 유기발광다이오드(organic light-emitting diode, OLED) 소자를 구현하는 데 성공했다고 3일 밝혔다. 유승협 교수 연구실의 김형석 박사(現 규슈 대학 연수연구원), 경상국립대학교 천형진 박사(現 임페리얼 칼리지 런던 연수연구원), KAIST 이동균 박사과정(유승협 교수 연구실)이 공동 제1 저자로 수행한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’2023년 5월 31일 자 온라인판에 게재됐다. (논문명: Toward highly efficient deep-blue OLEDs: Tailoring the multiresonance-induced TADF molecules for suppressed excimer formation and n
2023-07-03