〈 정유성 교수, 노주환 박사과정〉
우리 대학 EEWS대학원/생명화학공학과 정유성 교수 연구팀이 인공지능을 활용해 원하는 물성을 갖는 신소재를 역설계하는 기술을 개발했다.
연구팀은 알고리즘을 통해 수만 개의 물질을 학습시킨 뒤 인공지능을 통해 원하는 물성을 갖는 소재를 역설계하는 방식으로 4종의 신물질을 발견했다. 향후 신소재 개발에 크게 이바지할 수 있을 것으로 기대된다.
노주환 박사과정이 1저자로 참여한 이번 연구 결과는 ‘셀 (Cell)’ 자매지 ‘매터(Matter)’ 10월 2일 자 온라인판에 출판됐다. (논문명 : Inverse Design of Solid State Materials via a Continuous Representation)
소재 연구의 궁극적인 목표는 원하는 물성을 갖는 신소재를 개발하는 것이다. 하지만 현재까지의 신소재 개발은 화학적 직관과 실험적 시행착오를 통한 방법 위주였기 때문에 개발 비용과 시간이 많이 들어 소재 개념화에서부터 상용화에 걸리는 시간이 평균 30년 정도 소요됐다.
기존의 소재 개발 과정은 소재를 시행착오를 통해 합성하고 난 후 물성을 측정해 만들어진 소재가 응용 목적에 맞는 소재인지를 평가하는 방식으로 개발됐다.
정 교수 연구팀은 인공지능 기술과 슈퍼컴퓨터 활용을 융합해 이러한 소재 개발을 기간을 크게 단축할 수 있는 새로운 소재 역설계 방법을 개발했다. 정 교수팀이 개발한 소재 역설계 방법은 기계(알고리즘)로 기존의 수만 개 물질과 그 물질들이 갖는 물성을 학습하게 한 후, 원하는 물성을 갖는 물질을 인공지능 기반 알고리즘이 역으로 생성하는 방식이다.
연구팀이 개발한 소재 역설계 방법은 기존의 컴퓨터 스크리닝을 통해 소재 설계를 가속화 하는 연구와도 차별성이 있다. 스크리닝 기반의 소재 발견 기술은 발견될 물질이 스크리닝 대상이 되는 물질 데이터베이스를 벗어날 수 없다는 한계를 가지고 있다. 따라서 데이터베이스에 존재하지 않는 새로운 형태의 소재를 발견하지 못한다는 단점이 있다.
연구팀이 개발한 신소재 역발견 모델은 인공지능 모델의 한 종류인 생성모델을 이용한 것으로, 생성모델은 이미지 및 음성 처리에 활발하게 활용되고 있는 기술이다. 예를 들어 수천 명의 얼굴들을 기계로 학습하게 해 새로운 사람의 얼굴을 생성해 내는 인공지능 기법이다.
연구팀은 이미지 생성에 주로 쓰이는 생성모델 기반의 인공지능 기법을 알려지지 않은 무기 고체 소재를 생성하는 데 최초로 적용했다. 특히 기존의 생성모델을 고체 소재에 적용하기 위해 역변환이 가능한 3차원 이미지 기반의 표현자를 도입함으로써 현재까지의 소재 역설계 모델의 한계를 극복했고, 이를 iMatGen(image-based Materials Generator) 이라 이름 지었다.
연구팀은 개발된 소재 역설계 기법을 새로운 바나듐 산화물 결정구조를 예측하는데 적용했다. 이 학습 과정에서 기존에 알려진 물질을 제외해 학습하더라도 제외된 물질들을 역으로 재발견할 수 있음을 확인해 개발 모델의 타당성을 검증했다.
최종적으로 개발된 모델을 통해 학습된 연속 잠재공간을 다양한 방법으로 샘플링하고 역변환 함으로써 기존에 존재하지 않는 전혀 새로운 바나듐 산화물 결정구조를 예측할 수 있었다.
정유성 교수는 “이번 연구는 원하는 물성을 갖는 무기 고체 소재를 역으로 설계하는 방법을 데이터 기반 기계학습으로 최초로 보인 예로, 향후 다양한 응용 분야의 신소재 개발에 도움을 줄 수 있을 것으로 기대한다”라고 말했다.
이번 연구 성과는 한국연구재단, 산업통상자원부 산하 에너지기술평가원, 그리고 KISTI의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 개발된 소재 역설계 모델
우리 대학이 인공지능반도체 대학원(KAIST Graduate School of AI Semiconductor)을 설립해 석·박사과정 신입생 모집을 시작한다. 인공지능(AI) 반도체 기술은 챗GPT 등 사회 전반을 크게 변혁시키고 있는 인공지능의 핵심 기술이다. 정부는 인공지능과 시스템반도체를 혁신성장 전략투자 분야로 지정한 바 있으며, 인공지능반도체는 두 핵심 전략의 공통 요소로 국가의 차세대 성장동력으로 주목받고 있다. 하지만, 기술 선점 및 가치 창출을 위한 국내 전문 인력은 절대적으로 부족한 상태로 인공지능반도체 기술의 주도권을 확보를 위한 고급인력양성이 시급한 실정이다. 우리 대학은 2008년부터 인공지능반도체 기술 개발을 시작해 현재까지 세계 기술 개발의 흐름을 선도하고 있으며, 과학기술정보통신부의 인공지능반도체 고급인재 양성사업에 지난 5월 선정돼 인공지능반도체 대학원을 설립했다. 올 가을학기부터 학사 운영을 시작하는 인공지능반도체 대학원에서는 인공
2023-06-02신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다. 모더나 및 바이오엔텍은 암 치료를 위한 신생항원 백신용으로 개발하던 mRNA 플랫폼을 사용해 COVID-19 백신을 성공적으로 개발한 바 있으며, 현재 대규모 제약회사들과 함께 신생항원 암 백신 임상시험을 진행하고 있다. 이런 암 백신 개발을 위해 핵심적인 단계인 환자 맞춤형 신생항원 발굴에 활용될 인공지능 플랫폼이 개발되어 화제다. 우리 대학 바이오및뇌공학과 최정균 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다. 최정균 교수 연구팀은 딥러닝을 이용해 실제로 T 세포 면역반응을 유도할 수 있는 신생항원을 발굴하는 AI 모델을 개발했으며, 연구자들이 손쉽게 활용할 수 있는 웹서비스를 구축해 DeepNeo라는
2023-05-17우리 대학 김재철AI대학원(원장 정송)과 기술가치창출원(원장 최성율)이 공동 주관하여 ‘KAIST AI기술설명회 2023’을 5월 12일(금) 서울 COEX에서 개최했다. 오전 세션에서는 최근 사회에 큰 파장을 일으키고 있는 생성 AI분야의 양대 주제인 영상생성 모델 (Diffusion Model)과 대형 언어생성 모델 (ChatGPT 등)에 대해 우리 대학 김재철AI대학원 예종철 교수, 서민준 교수가 각각 튜토리얼을 진행했다. 또한 인공지능 기술을 사용하여 산업설비의 에너지 비용을 절감한 사례에 대해 최재식 교수가 발표했다. 이어서 KAIST 기술이전 절차(지식재산 및 기술이전센터 김권 센터장)와 KAIST 장기 기업자문 특화 플랫폼인 ILP 프로그램(산학협력센터 김성완 센터장)에 대해서 일반에 소개하는 자리를 가졌다. 기술소개 세션 1부에서는 ▲자기 피드백을 활용한 고성능 챗봇 개발 기술(서민준 교수) ▲대형 언어모델 교사를 활용한 소형 추론 모델
2023-05-15우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다. ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다. 홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다. 전산학부 김동균 박사과정(제1 저자), 김진우 박사과
2023-05-08다공성 소재는 넓은 공극과 표면 면적을 지니고 있어, 가스 흡착, 분리, 촉매 등 다양한 에너지 및 환경 분야에서 적용된다. 다공성 소재 중 한 종류인 금속 유기 골격체(MOF)는 무한대에 가까운 경우의 수를 갖는 넓은 물질 공간(materials space) 안에 존재하기에, 인공지능을 사용해 최적의 물질을 추출하고 특성을 예측하려는 연구가 활발히 진행되고 있다. 하지만 이러한 모델들은 대부분 특정한 물성 한 종류만 학습할 수 있으며, 모든 재료 특성에 보편적으로 적용할 수 없다는 단점이 존재한다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 세계 최초로 멀티모달 트랜스포머를 적용한 인공지능(AI)을 통해 다공성 소재의 다양한 물성을 예측하는 기술을 개발했다고 5일 밝혔다. 멀티모달 트랜스포머는 비디오 프레임과 오디오 트랙, 웹 이미지와 캡션, 교육용 비디오와 음성 대본과 같이 서로 다른 형태의 정보를 효과적이고 효율적으로 결합하도록 설계된 신경망 모델의 일종이다. 김
2023-04-05