〈 박윤수 연구원, 장석복 교수 〉
자연계의 많은 분자들은 자신과 똑 닮은 ‘쌍둥이 분자’를 갖고 있다. 이들은 구성하는 원소의 종류와 개수가 같아도 서로 완전히 다른 성질을 나타낸다. 특히 쌍둥이 분자가 서로를 거울에 비친 모습과 같은 형상을 띈 경우를 ‘거울상 이성질체’라고 한다.
우리 대학 화학과 장석복 교수(IBS 분자활성 촉매반응 연구단장)와 IBS 박윤수 연구원은 두 개의 거울상 이성질체 중 한 종류의 분자만을 선택적으로 합성할 수 있는 새로운 촉매를 개발했다. 또 이 촉매를 이용해 자연에 풍부한 탄화수소화합물을 의약품의 필수재료인 카이랄 락탐으로 제조하는 데도 성공했다.
거울상 이성질체는 왼손과 오른손처럼 서로를 거울에 비춰보면 같은 모양이지만, 아무리 회전시켜도 겹칠 수 없는 이성질체를 말한다. 거울상 이성질성 또는 카이랄성(Chirality)이라고 불리는 이 특성은 의약품 개발에도 매우 중요하다. DNA, 단백질 등 생체물질 역시 카이랄성을 지녀 개발된 약물의 유형에 따라 각각 다른 생리활성을 나타내기 때문이다. 또 한 쪽 유형이 유용할지라도, 다른 유형의 이성질체는 독약이 될 수도 있다. 하지만 유용한 이성질체만을 선택적으로 합성하는 비대칭반응(asymmetric synthesis)은 아직까지 현대 화학의 난제로 꼽히고 있다.
연구진은 새로운 촉매 개발로 이 난제를 해결했다. 연구팀은 2018년 3월 국제학술지 ‘사이언스(Science)’에 자연계에 풍부한 탄화수소를 고부가가치의 감마-락탐 화합물로 전환시키는 이리듐 촉매 개발 성과를 발표한 바 있다. 하지만 당시 개발된 촉매 역시 두 가지 형태의 거울상 이성질체가 선택성 없이 모두 얻어진다는 단점이 있었다.
이번 연구에서 연구진은 수십여 개의 후보 촉매 중 카이랄 다이아민(Chiral Diamine) 골격을 포함한 이리듐 촉매가 99% 이상의 정확도로 거울상을 선택할 수 있음을 발견했다. 개발된 촉매는 필요에 따라 카이랄성 감마-락탐을 골라서 합성할 수 있다. 왼손잡이성 이리듐 촉매를 사용할 경우엔 왼손잡이성 감마-락탐이, 오른잡이성 이리듐 촉매를 사용하면 오른손잡이성 감마-락탐을 제조할 수 있다.
이후 연구진은 계산화학 시뮬레이션 연구를 통해 높은 선택성의 원인을 분석했다. 가령, 왼손잡이성 촉매를 사용한 경우에는 락탐의 합성과정에서 카이랄 다이아민 촉매와 탄화수소화합물 사이에는 일시적인 수소 결합이 발생하고, 이로 인해 왼손잡이성 락탐 형성이 촉진된다는 사실을 확인했다.
연구진은 개발한 촉매를 통해 다양한 구조를 갖는 카이랄 락탐 화합물을 합성하는 데도 성공했다. 이렇게 합성된 카이랄 락탐은 독특한 입체적 특성 때문에 생체 단백질과의 상호작용이 유용하다. 특히 우리 신체를 구성하는 아미노산 유도체나, 천연물도 모두 카이랄성 분자인 만큼, 신체 내 생리활성을 효과적으로 높인 약물 개발이 가능할 것으로 기대된다.
이번 연구를 이끈 장석복 단장은 “약효를 갖는 의약품의 핵심 단위만 선택적으로 제조할 수 있는 기술로 향후 유기합성 및 의약분야 연구로 이어져 부작용을 덜고 효과는 높인 신약개발까지 이어지리라 기대한다”며 “자연계에 풍부한 탄화수소화합물을 재료로 고부가가치 원료를 제조할 수 있다는 경제적 효과도 있다”고 말했다.
연구성과는 화학분야 권위지인 네이처 카탈리시스(Nature Catalysis) 2월 19일자(한국시간) 온라인 판에 실렸다.
□ 그림 설명
그림1. 비대칭반응을 통한 카이랄성 감마-락탐 합성
그림2. 연구 성과 개요
탄소 중립에 도달하기 위해 수소가 미래 에너지원으로 주목받고 있다. 수소 연료전지는 수소와 공기 중의 산소를 반응시켜 전기를 생산하는 발전장치로, 중소형 발전뿐만 아니라 승용차, 버스, 선박 등과 같은 운송 수단의 동력원으로 개발되고 있다. 그러나, 현재 전극 재료로 귀금속인 백금을 사용하고 있어 가격을 낮추는 데 걸림돌이 되고 있다. 우리 대학 신소재공학과 에너지 변환 및 저장재료 연구실 조은애 교수 연구팀이 백금을 대체할 수 있는 저렴하지만 고성능을 가진 전극 소재를 개발하는 데 성공했다고 11일 밝혔다. 조은애 교수 연구팀은 차세대 연료전지로 개발되고 있는 음이온 교환막 연료전지용 전극 소재로 백금보다 우수한 성능을 갖는 `니켈-몰리브데넘 소재'를 개발했다고 밝혔다. 특히, 신규 개발 촉매를 실제 연료전지에 적용하는 경우 다양한 변수에 의해 실성능을 얻지 못하는 경우가 많다. 그러나, 연구팀은 이번 연구에서 이를 극복하고 실제 연료전지에 신규 개발 촉매를 적용하는 것
2023-05-11우리 대학 7개 연구실이 과학기술정보통신부가 주관하는 2022 안전관리 우수연구실 인증을 획득했다. 안전관리 우수연구실 인증제는 대학이나 연구기관 등에 설치된 과학기술 분야 연구실이 자율적으로 안전관리 역량을 강화할 수 있도록 정부가 2013년 도입한 제도다. 안전관리 표준모델을 발굴하고 확산하는 것을 목표로 안전관리 수준과 활동이 우수한 연구실에 전문가의 심사를 통한 인증을 부여하고 있다. 이번에 신규 인증을 획득한 연구실은 총 7개로 대전 소재 정부출연연구기관 중 최다 규모다. 생명과학과 ①시스템 및 합성생물학 연구실(조병관 교수), 신소재공학과 ②NanoSF 연구실(강정구 교수), ③바이오신소재연구실(박찬범 교수), ④지속가능에너지재료 연구실(정우철 교수), ⑤신소재 영상화 및 융합 연구실(홍승범 교수), 원자력및양자공학과 ⑥핵융합 및 플라즈마 동역학 연구실(성충기 교수), 화학과 ⑦나노촉매
2023-01-30우리 대학 물리학과 양용수 교수, 화학과 한상우 교수, 기계공학과 유승화 교수 공동연구팀이 한국기초과학지원연구원, 한국화학연구원과의 공동연구 및 미국 로런스 버클리 국립연구소(Lawrence Berkeley National Laboratory), 영국 버밍엄 대학교(University of Birmingham)와의 국제 협력 연구를 통해 팔라듐-백금 코어-쉘 구조 나노입자의 3차원 계면구조와 그 특성을 규명했다고 3일 밝혔다. 코어-쉘(core-shell) 구조 나노입자는 서로 다른 물질로 이루어진 코어(알맹이)와 쉘(껍데기)이 맞붙은 형태로 합성된 나노물질이다. 코어와 쉘 간의 경계면에서 코어를 이루는 물질과 쉘을 이루는 물질 간의 원자 간격 차이로 인해 원자 구조의 변형이 일어나며, 이 변형을 제어함으로써 나노입자의 광학적, 자기적, 촉매적 성질들을 변화시킬 수 있다. 특히 수소연료전지 제작에 필수적으로 사용되는 촉매에 값비싼 백금이 주로 사용되는데, 코어-쉘 구조를
2022-11-03우리 대학 기계공학과 배중면 교수, 이강택 교수와 한국에너지기술연구원(KIER) 이찬우 박사 공동 연구팀이 상용 디젤로부터 수소 생산이 가능한 고활성, 고내구성 디젤 개질 촉매 개발에 성공했다고 16일 밝혔다. 연료 개질(fuel reforming)은 탄화수소로부터 촉매 반응을 통해 수소를 추출하는 수소 생산 기술이다. 액체 연료인 디젤은 수소 저장 밀도가 높고 운반과 저장이 쉽다는 장점이 있어 디젤 개질을 통한 수소 공급 장치를 헤비트럭의 보조전원장치, 잠수함의 공기불요추진체계 등 모바일 연료전지 시스템에 적용하고자 하는 연구가 지속돼왔다. 그러나 디젤은 고 탄화수소의 혼합물로 긴 사슬 구조의 파라핀, 이중 결합을 갖는 올레핀, 벤젠 고리 구조를 갖는 방향족 탄화수소를 포함하고 있어 고 탄화수소를 효과적으로 분해하기 위한 높은 활성도의 촉매가 요구된다. 그뿐 아니라, 촉매의 성능 저하 요인인 코킹 및 열 소결에 대해 강한 내구성을 갖는 촉매가 요구돼 디젤 개질 기술 활용
2022-08-16우리 대학 화학과 윤동기 교수 연구팀이 카이랄(비대칭성) 액정 물질의 자발적 조립으로 위상학적 솔리톤의 형성을 규칙적으로 대면적에서 제어하고 형성과정을 실시간으로 관찰하는 데 성공했다고 11일 밝혔다. 솔리톤은 특정한 파동이 주변과 상호작용을 통해 사라지지 않고 계속 유지하는 현상을 말한다. 특히 파동이 멀리까지 전달될 때도 그 고유의 정보를 잃지 않고 끝까지 원하는 지점까지 도달하는 특성을 갖는다. 따라서, 최근 해킹에 자유로울 수 없는 디지털 사회에서 솔리톤은 고유의 높은 안정성으로 인해 미래 통신의 핵심이 되리란 기대가 크다. 더 나아가 유기 액정 분자를 이용해 만들어진 위상학적 솔리톤은 스핀(spin)이라는 특별한 방향성을 갖고 있기에 차세대 복제 방지 장치 및 메모리 소자로 이용될 수 있을 것으로 기대된다. 윤 교수팀은 특별히 이번 연구를 통해 지금까지는 상온과 같은 온화한 조건에서 실시간으로 관찰할 수 없었던 위상학적 솔리톤의 형성과정을 밝혔다. 이는 공기기둥으
2022-07-11