〈 최성율 교수 〉
우리 대학 전기및전자공학부 최성율 교수 연구팀이 멤리스터(Memristor) 소자의 구동 방식을 아날로그 형태로 변화해 뉴로모픽 칩의 시냅스로 활용할 수 있는 기술을 개발했다.
이 기술을 통해 기존의 디지털 비휘발성 메모리로만 이용되던 멤리스터를 아날로그 형태로 활용함으로써 인간의 뇌를 모사한 인공지능 컴퓨팅 칩인 뉴로모픽 칩의 상용화에 기여할 수 있을 것으로 기대된다.
장병철 박사(현 삼성전자 연구원), 김성규 박사(현 노스웨스턴대학), 양상윤 연구교수가 공동 1 저자로 참여하고 美 노스웨스턴 대학, KAIST 임성갑 교수가 공동으로 수행한 이번 연구는 나노과학 분야 국제 학술지 ‘나노 레터스 (Nano Letters)’ 1월 4일 온라인판에 게재됐다.
사람 뇌를 닮은 반도체로 알려진 뉴로모픽 칩은 기존의 반도체 칩이 갖는 전력 확보 문제를 해결할 수 있고 데이터 처리 과정을 통합할 수 있어 차세대 기술로 주목받고 있다.
멤리스터는 메모리와 레지스터의 합성어로, 메모리와 프로세스가 통합된 기능을 수행할 수 있다. 특히 뉴로모픽 칩 내부에 물리적 인공신경망을 가장 효과적으로 구현할 수 있는 크로스바 어레이(crossbar array) 제작에 최적인 소자로 알려져 있다.
물리적 인공신경망은 뉴런 회로와 이들의 연결부인 시냅스 소자로 구성되는데 뉴로모픽 칩 기반의 인공지능 연산을 수행할 때 각 시냅스 소자에서는 뉴런 간의 연결 강도를 나타내는 전도도 가중치가 아날로그 데이터로 저장 및 갱신돼야 한다.
그러나 기존 멤리스터들은 대부분 비휘발성 메모리 구현에 적합한 디지털의 특성을 가져 아날로그 방식의 구동에 한계가 있었고, 이로 인해 시냅스 소자로 응용하기 어려웠다.
최 교수 연구팀은 플라스틱 기판 위에 고분자 소재 기반의 유연 멤리스터를 제작하면서 소자 내부에 형성되는 전도성 금속 필라멘트 크기를 금속 원자 수준으로 얇게 조절하면 멤리스터의 동작이 디지털에서 아날로그 방식으로 변화하는 것을 발견했다.
연구팀은 이러한 현상을 이용해 멤리스터의 전도도 가중치를 연속적, 선형적으로 갱신할 수 있고 구부림 등의 기계적 변형 상태에서도 정상 동작하는 유연 멤리스터 시냅스 소자를 구현했다.
유연 멤리스터 시냅스로 구성된 인공신경망은 학습을 통해 사람의 얼굴을 효과적으로 인식해 분류할 수 있고 손상된 얼굴 이미지도 인식할 수 있음을 확인했다. 이를 통해 얼굴, 숫자, 사물 등의 인식을 효율적으로 수행할 수 있는 유연 뉴로모픽 칩 개발의 가능성을 확보했다.
최 교수는 “멤리스터 소자의 구동 방식이 디지털에서 아날로그로 변화되는 주요 원리를 밝힘으로써 다양한 멤리스터 소자들을 디지털 메모리 또는 시냅스 소자로 응용할 수 있는 길을 열었다”라며 “고성능 뉴로모픽 칩 개발의 가속화에 기여할 수 있을 것이다” 라고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단 글로벌프론티어사업 중 (재)나노기판소프트일렉트로닉스 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 플라스틱 기판 위에 제작된 유연 멤리스터 시냅스 소자 모식도
우리 대학 신소재공학과 김경민 교수 연구팀이 낸드플래시(NAND Flash)의 전하 저장 방식을 활용하여 양산성이 높으며 높은 균일도를 갖는 고신뢰성 인공 시냅스 소자 개발에 성공했다고 6일 밝혔다. 최근 고성능의 인공지능 기술(Artificial Intelligence; AI) 구현을 위하여 인공 시냅스 소자를 통해 크로스바 어레이 구조에서 고밀도의 메모리 집적과 행렬 연산 가속을 동시에 구현하는 맞춤형 하드웨어를 개발하기 위한 노력이 계속되고 있다. 시냅스 소자의 후보 물질로 다양한 물질이 제시되었으나, 인공지능 가속기가 요구하는 다비트성 (Multi-bit), 보존성 (retention), 균일성 (uniformity), 내구성(Endurance) 등을 모두 만족하는 소자는 매우 드물었으며, 또한 제시되는 후보 물질들의 동작 방식도 기존 반도체 소자들과 매우 달라 반도체 소자로 활용함에 있어 양산성 및 수율 등에도 추가적인 검증이 필요하다는 한계가 있었다.
2022-12-06우리 대학 전기및전자공학부 최신현 교수 연구팀이 부가적인 회로 없이 소자의 특성을 이용해 인공지능(AI)의 학습 정확도를 높이면서, 높은 내구성을 바탕으로 신뢰성 높은 반복 동작이 가능하도록 설계된, 인간 뇌의 신경전달물질을 모사한 고신뢰성 인공 *시냅스 트랜지스터를 개발했다고 16일 밝혔다. ☞ 시냅스 트랜지스터(Synapse Transistor): 신경 세포간 연결부인 시냅스를 모사하는 트랜지스터 소자로, 연결 강도를 의미하는 가중치(Weight)를 채널의 저항(또는 컨덕턴스)값으로 나타내 이전 단에서 다음 단으로 흐르는 전류의 양을 조절한다. 최 교수 연구팀은 기존 낸드 플래시 메모리에 사용되는 구조를 이용하면서도, 기존 낸드 플래시의 단점인 낮은 내구성을 개선하는 방법을 차용해, 안정적인 시냅스 역할을 할 수 있는 트랜지스터를 개발했다. 낸드 플래시 메모리는 높은 전압을 이용해, 소자의 구성 물질을 손상시키는 방법(FN 터널링)으로 데이터를 저장하는 반면, 연구팀
2022-11-16전기및전자공학부 박시온 연구원, 정학천 연구원, 박종용 연구원 및 최신현 교수는 점진적 산소 농도를 갖는 금속산화물 층을 활용하여 우리 뇌의 뉴런 세포의 동작을 모사하는 고 신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발 하였으며, 올해 Nature Communications에 출판됐다. 위 연구는 최근 Nature Communications의 Editor's highlight 논문에 선정됨에 이어, Featured Image로 선정되어 홈페이지 메인을 장식했다. 관련 링크 : https://www.nature.com/ncomms/ 또한 본 연구는 2022 가을 KAIST 공과대학 breakthrough 연구성과로 소개된 바 있다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing) 이번 연구
2022-10-31우리 연구진이 노화 및 치매 뇌에서 기억 중추인 해마 특이적으로 비정상적 별아교세포가 생겨나는 것을 최초로 관찰하고 그 원인을 규명했으며 이들은 신경 세포의 연결점인 시냅스의 숫자 및 기능 유지에 악영향을 줄 수 있음을 밝혔다. 이는 노화에 따른 인지 기능 저하를 일으키는 새로운 원인을 제시해 뇌 기능 회복에 활용이 기대된다. 우리 대학 생명과학과 정원석 교수와 이은별 박사, 정연주 박사 연구팀이 노화된 뇌에서 기존에 알려지지 않은 새로운 종류의 별아교세포를 발견했고, 이들이 세포 내 단백질 항상성이 손상돼 시냅스 생성 및 제거와 같은 기본적 능력이 결여돼있음을 밝혀 노화 관련 네이처 자매지인 `네이처 에이징(Nature Aging)'에 공개했다고 8일 밝혔다. 정원석 교수 연구팀은 이전 연구를 통해 비신경세포인 별아교세포가 신경세포의 시냅스를 만들 수도 또는 제거할 수도 있음을 밝힌 바 있다. 하지만, 이 같은 별아교세포의 기능이 노화 과정에서 어떻게 변화하는지는 알려지
2022-08-08우리 대학 물리학과 김갑진 교수와 신소재공학과 박병국 교수 공동연구팀이 뇌 모방 소자로 개발 중인 스핀토크발진기 주파수 대역을 증대시킬 핵심 기술을 개발했다고 18일 밝혔다. 두 연구팀은 비자성체/강자성체/산화물 3중층 구조의 자기발진소자에 게이트 전압을 인가하여 GHz 수준의 발진주파수 조절에 성공하였다. 이는 기존 기술보다 약 10배 이상 향상된 결과로 스핀토크 기반 뉴로모픽 소자가 가진 학습 효과의 휘발성, 좁은 주파수 대역 등의 문제를 해결할 핵심 기술로 제안되었다. 본 소자는 게이트 전압이 영구적으로 수직자기이방성을 변화시켜 소자에 전류가 흐르지 않아도 학습 내용이 저장되어 있는 비휘발성 특성을 가지고 있으며 그 폭이 GHz 수준으로 넓어 뉴로모픽 소자 활용성을 증대시켜줄 것으로 기대된다. 신소재공학과 최종국 박사과정과 물리학과 박재현 박사가 공동 제1저자로 참여하고, KAIST 신소재공학과 강민구 연구원, 고려대학교 이재성 교수와 김도윤 연구원, KAIST
2022-07-29