〈 이진우 교수, 임원광 연구원 〉
우리 대학 생명화학공학과 이진우 교수 연구팀이 서로 다른 크기의 기공을 갖는 구조의 무기소재 합성을 통한 황 담지체를 개발해 리튬-황 이차전지의 성능을 높이는 데 성공했다.
연구팀은 다차원 상분리 현상을 동시에 유도해 각기 다른 두 종류, 크기의 기공을 갖는 티타늄질화물을 합성했고 이를 황 담지체로 활용해 우수한 수명 안정성과 속도를 갖는 리튬-황 이차전지를 구현했다.
포스텍 화학공학과 한정우 교수와 공동으로 진행하고 임원광 석박사통합과정이 1저자로 참여한 이번 연구는 재료 분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 1월 15일자 표지논문에 게재됐다. (논문명 : Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation, 다차원 상분리를 활용한 계층형 다공성 구조의 티타늄질화물 합성 및 이를 통한 우수한 안정성과 높은 속도 특성의 리튬-황 이차전지 개발)
전기 자동차, 스마트 그리드 등의 기술은 대용량 에너지를 제어해야 하는 시스템으로 이를 효율적으로 활용하기 위한 차세대 이차전지 개발의 필요성이 더욱 커지고 있다.
리튬-황 이차전지는 이론적으로 기존 리튬 이온 이차전지보다 약 7배 이상 높은 에너지 밀도 특성을 보인다. 또한 황의 저렴한 가격은 전지 생산 단가를 급격히 낮춰줄 수 있을 것으로 기대되고 있다.
그러나 리튬-황 이차전지 음극과 양극에서 많은 문제점이 남아있어 상용화에 한계가 있다. 특히 양극에서는 황의 낮은 전기 전도도와 황이 충·방전 과정에서 전극으로부터 새어나가는 현상이 문제점으로 남아있다.
이를 해결하기 위해 황을 안정적으로 담을 수 있는 그릇 역할의 소재, 즉 황 담지체에 대한 연구가 활발하게 이뤄지고 있다.
기존 극성 표면의 무기 소재들은 황과 강한 작용력을 갖지만 무기 소재의 구조적 특성 제어를 할 방법이 부족해 황 담지체로 개발하기에는 한계가 있었다. 이번 연구는 독창적인 합성법을 개발함으로써 이 한계점을 극복했다.
연구팀은 문제 해결을 위해 50나노미터 이상 크기의 매크로 기공과 50나노미터 이하의 메조 기공을 동시에 지닌 계층형 다공성 구조의 티타늄질화물 기반의 황 담지체를 개발했다.
티타늄질화물은 황과의 화학적 작용력이 매우 강하고 전기 전도도가 높아 충·방전 과정에서 황이 전극으로부터 빠져나가는 것을 막아주고 황의 전기화학적 산화, 환원 반응을 빠르게 해준다.
연구팀은 매크로 기공과 메조 기공의 구조적 시너지 효과로 인해 많은 양의 황을 안정적으로 담으면서도 높은 수명 안정성 및 속도 특성을 보임을 확인했다.
이 교수는 “리튬-황 이차전지는 여전히 해결해야 할 문제점이 많아 이를 해결하기 위한 연구는 지속적으로 이뤄져야 한다”라며 “이번 연구를 통해 안정적인 수명을 지닌 양극 소재 개발의 독보적인 기술을 확보했다”라고 말했다.
이번 연구는 LG화학과 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 계층형 다공성 티타늄질화물 합성전략 모식도
그림2. 합성된 계층형 다공성 티타늄질화물 전자현미경 사진
그림3. 저널 표지 원본
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다. 하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케
2022-11-08우리 대학 신소재공학과 전석우 교수와 김일두 교수, 미국 일리노이대학 어바나-샴페인 캠퍼스 폴 브라운(Paul V. Braun) 교수 공동연구팀이 차세대 친환경 유기 이차전지의 핵심기술을 개발하는 데 성공했다고 24일 밝혔다. 연구진은 재현성 있는 광학 패터닝 기술을 통해 고도로 정렬된 나노 네트워크 구조의 유기 음극을 설계해 리튬유기전지의 성능을 획기적으로 향상시켰다. 연구진이 이번에 확보한 충·방전 특성은 현재까지 보고된 유기 음극 소재 중 가장 높은 수준으로, 무기물 기반의 현 전극 소재를 대체할 수 있으며 장기적으로는 전기차 또는 휴대용 전자기기 등 상용화에 크게 기여할 것으로 기대되고 있다. 유기 이차전지는 원료 수급에 제한이 적고 저렴한 유기 전극 소재를 기반으로 하며 전극의 경량화가 가능하고 우수한 가변성은 물론 재활용이 용이하다는 장점이 있어 지속 가능한 친환경 전지 시스템으로 각광 받고 있다. 하지만 유기물의 낮은 전기전도도를 극복하기 위해
2021-11-24우리 대학 생명화학공학과 최남순 교수 연구팀이 리튬금속전지의 장수명화를 가능하게 하는 전해액 첨가제 기술을 개발했다고 16일 밝혔다. 개발된 첨가제 조합 기술은 리튬금속 음극 표면에 바람직한 이중층 고체전해질 계면 박막을 형성해 리튬 덴드라이트 형성을 억제하고 리튬이온을 균일하게 전달해 리튬금속전지의 수명과 고속 충‧방전 특성을 대폭 향상시켰다. 오래 달리는 전기차를 실현하기 위해서는 전지의 핵심 성능인 에너지밀도를 높여야 한다. 리튬금속전지는 리튬이온전지의 흑연보다 10배 이상 높은 용량을 발현하는 리튬금속 음극을 채용하고 있어 전지의 고에너지 밀도화를 달성할 수 있다. 그러나 높은 환원력을 가지는 리튬금속 음극과 전해액의 반응을 제대로 제어하지 못하면 리튬금속전지의 장수명을 달성하기 어렵다. 리튬금속 표면에 고체전해질 계면막을 형성시키는 것에만 집중해 한계점을 보이는 기존 연구들과는 달리 연구팀은 고체전해질 계면막을 계층화하고 형성된 이중층 계면막의 담당 기능을 구체화
2021-11-16생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 기술을 개발했다.연구팀의 합성기술은 다공성 2차원 탄소 소재의 기공 크기와 구조 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술로 2차전지, 촉매 분야에서 고용량 전극 소재로 활용될 것으로 기대된다. 김성섭 박사, 주미은 석사가 공동 1 저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국화학회지(Journal of the American Chemical Society, JACS)’ 2월 13일 자 온라인판에 게재됐다. (논문명: Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets) 기존의 다공성 2차원 탄소 소재의 합성은 대부분 그래핀 소재에 기공을 형성하는 방식에
2020-03-20〈 왼쪽부터 육종민 교수, 박재열 박사과정, 박지수 박사과정 〉 우리 대학 신소재공학과 육종민 교수 연구팀이 황화구리를 기반으로 한 나트륨 이차전지 전극 재료의 나트륨 저장 원리를 밝혔다. 나트륨 이차전지는 1일 1회 충, 방전 시 5년 이상 사용할 수 있는 우수한 성능을 가진 전지로, 이번 연구를 통해 수명이 긴 전극 재료 개발에 기여할 것으로 예상된다. 연구팀의 이번 연구는 높은 저장 용량을 가지는 소재의 충. 방전 반복에 따른 열화 방지 관련 핵심원리를 규명했다는 점에서 의의가 있다. 황화구리는 지구상에 풍부한 구리와 황으로 이뤄져 있어 다른 나트륨 저장 소재 대비 경쟁력이 높아 나트륨 전지의 상용화를 크게 앞당길 것으로 기대된다. 박재열 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 사이언스(Advanced Sciences)’ 6월호 표지논문(Inside back cover)에 선정됐다. (논문명 : Pulver
2019-07-01