
〈 이 상 엽 특훈교수 〉
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대장균을 발효시켜 바이오매스로부터 헴(haem)을 생산하고 세포 밖으로 분비할 수 있는 기술을 개발했다.
이는 대사공학 전략을 통해 헴의 생산량을 대폭 높이고 생산된 헴을 효과적으로 세포 바깥에 분비하는 데 성공한 친환경적, 효율적 원천기술로 생산한 헴을 이용해 각종 산업의 확장에 기여할 수 있을 것으로 기대된다.
자오신루이, 최경록 연구원이 참여한 이번 연구는 국제 학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 8월 28일자 온라인 판에 게재됐다.
헴은 생명 유지에 필수적인 철분으로 혈액에서 산소를 운반하는 헤모글로빈이나 세포 호흡에 필수적인 사이토크롬을 비롯한 여러 중요한 단백질 기능에 핵심적 역할을 한다. 특히 인체 흡수율이 높기 때문에 고급 철분제나 약물로 이용된다.
무분별한 가축의 사육이 여러 사회 이슈를 불러일으키는 상황에서 최근 헴이 고기 맛을 내는 핵심 요소로 밝혀지며 콩고기에 미생물이나 식물에서 추출한 헴을 넣어 맛과 영양, 환경 등을 고려한 콩고기 조리법이 주목받기도 했다.
그러나 기존의 헴 생산 방식은 유기 용매를 이용한 동물의 혈액과 일부 식물 조직으로부터의 추출에 의존하고 있기 때문에 비효율적일 뿐 아니라 친환경적이지 않다는 한계가 있다.
대장균을 이용한 헴 생산 기술이 개발된 바 있지만 생산량이 수 밀리그램(mg)에 그치고 생산된 헴이 세포 내에 축적되기 때문에 헴 추출 등의 문제를 해결하지 못했다. 따라서 고농도로 헴을 생산하면서도 세포 바깥으로 헴을 분비해 정제를 용이하게 하는 친환경 생산 시스템 개발이 필요했다.
연구팀은 바이오매스를 이용한 고효율 헴 생산 미생물을 제작하기 위해 대장균 고유의 헴 생합성 회로를 구성했다. 또한 기존에 사용되지 않았던 C5 대사회로를 사용해 헴 생산의 전구체인 5-아미노레불린산을 생합성했다.
이를 통해 원가가 비싸고 세포 독성을 일으키는 물질인 글리신을 사용하지 않고도 헴 생산량을 대폭 높였다. 이 과정에서 연구팀은 헴 생산량이 향상됨에 따라 생산된 헴이 상당 비율로 세포 바깥으로 분비되는 것을 발견했다.
연구팀은 구성한 대장균의 헴 분비량을 더욱 높이기 위해 사이토크롬 생합성에 관여한다고 알려진 단백질인 헴 엑스포터를 과발현함으로써 헴 생산량과 세포외 분비량 모두가 향상된 헴 분비생산 균주를 개발했다. 이를 통해 헴 엑스포터와 헴의 세포외 분비 사이의 연관성을 밝혔다.
이번 연구를 통해 개발된 기술을 활용하면 환경, 위생, 윤리적 문제없이 재생 가능한 자원을 통해 헴 생산을 할 수 있다. 향후 의료 및 식품 산업 등 헴을 이용하는 다양한 분야에 중요한 역할을 할 것으로 예상된다.
이 특훈교수는 “건강 보조제, 의약품, 식품 첨가물 등 다양한 활용이 가능한 헴을 미생물발효를 통해 고효율로 생산했다”며 “생산된 헴의 3분의 2 가량을 세포 바깥으로 분비하는 시스템을 개발함으로써 산업적 활용을 위한 헴의 생산 및 정제를 용이하게 했다는 의의를 갖는다”고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 지원을 받아 수행됐다.
□ 그림 설명
그림1. 대장균을 이용한 헴 생산 및 세포외 분비 전체 개념도

페트병, 스티로폼, 나일론 등 일상 곳곳에 쓰이는 BTEX(벤젠·톨루엔·에틸벤젠·파라자일렌)은 핵심 원료지만, 지금까지는 석유 정제를 통해서만 얻을 수 있었다. 식물 기반 생산 시도는 오랫동안 난제로 남아 있었다. 그러나 KAIST 연구팀이 마침내 석유 대신 폐목재 등 바이오매스 유래의 포도당으로부터 BTEX를 생산하는 데 성공, 차세대 친환경 플라스틱 원료로 가는 길을 열었다. 우리 대학은 생명화학공학과 이상엽 특훈교수 및 화학과 한순규 교수 공동 연구팀이 미생물 발효 공정과 유기화학 반응을 결합하여 포도당, 글리세롤과 같은 재생 가능한 바이오 원료에서 벤젠, 톨루엔, 에틸벤젠, 파라자일렌 등(BTEX)을 생산하는 공정을 개발하였다고 12일 밝혔다. 우리 대학 연구팀은 석유 정제로 인한 환경 부담과, 복잡한 화학 구조 때문에 식물 기반 BTEX 생산이 어려웠던 문제를 미생물 세포공장과 화학 반응을 융합한 새로운 공정으로 해결했다. 미생
2025-10-13유전자를 켜고 끈다는 것은 마치 전등 스위치를 올리고 내리듯, 세포 속 유전자의 작동 여부를 조절하여 켜면 단백질이나 물질 생산이 활발해지고, 끄면 생산이 억제된다. 한국 연구진이 기존에 ‘끄는 기능’에 치중됐던 한계를 넘어, 유전자를 켜고 끄는 것을 동시에 구현할 수 있는 혁신적 시스템을 세계 최초로 개발하며 합성생물학 기반 바이오산업의 새로운 패러다임을 열었다. 우리 대학 공학생물학대학원(생명과학과 겸임) 이주영 교수와 국가과학기술연구회(이사장 김영식) 산하 한국화학연구원(원장 이영국) 노명현 박사 공동연구팀이 대장균에서 원하는 유전자를 동시에 켜고 끄는 것이 가능한 새로운 이중모드 크리스퍼(CRISPR) 유전자 가위 시스템을 개발했다고 21일 밝혔다. 대장균은 실험이 쉽고 산업적 활용으로 바로 이어질 수 있는 대표적인 미생물이다. 한편, 유전자 가위(CRISPR) 기술은 21세기 생명공학의 가장 혁신적인 도구로 평가받고 있다. 특히 합성생물학
2025-09-22노안 및 백내장 예방에 효과가 있는 대표적인 눈 건강 기능성 성분 ‘루테인’을 우리 연구진이 2022년 전자 채널링 기술을 적용한 대장균을 통해 세계 최초로 생산하는 데 성공한 바 있다. 이후 연구진은 기존 기술이 가진 대장균의 내독소(endotoxin) 문제를 해결하고, 동시에 대량 생산이 가능한 미생물 대사공학 기반의 친환경적이고 고효율적인 루테인 생산 플랫폼을 새롭게 개발하여 실용성과 안전성 모두를 획기적으로 향상시키는데 성공했다. 향후, (주)실리코바이오(이상엽 특훈교수 교원창업기업)을 통해 기술사업화를 추진할 예정이다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `루테인을 대량 생산하는 미생물 균주 개발'에 성공했다고 13일 밝혔다. 기존의 미생물 대사공학을 이용한 루테인 생산 연구에서는 부산물 생성이 많고 루테인 축적량이 제한되는 한계가 있었다. 이는 루테인 합성 대사경로에서 특정 병목 단계가 존재하여 대사 흐름이 원활하게 진행되지 못
2025-07-14짠 음식을 자주 섭취하는 식습관이 건강에 해롭다는 것은 널리 알려진 사실이다. 그런데 최근 KAIST 연구진은 짠 음식이 뇌종양까지 악화시킬 수 있다는 사실을 세계 최초로, “왜 나빠지는지", "무엇이 그 과정을 유도하는지", "어떤 유전자가, 어떤 단백질이 작용하는지"까지 분자적 인과관계를 입증해 주목받고 있다. 우리 대학 생명과학과 이흥규 교수 연구팀이 고염식이 장내 미생물 구성을 변화시키고, 이로 인해 증식이 증대된 미생물에 의해 분비되는 대사물질인‘프로피오네이트(propionate)‘가 장내에 과도하게 축적되어 뇌종양을 악화시킨다는 사실을 밝혀냈다. 연구팀은 뇌종양 마우스 모델을 이용한 실험에서 이 같은 사실을 입증했다. 마우스에게 4주간 짠 사료를 섭취하게 한 뒤 종양세포를 주입하자 일반식이 그룹에 비해 생존율이 크게 낮아지고 종양 크기가 증가하는 것을 확인했다. 이어 항생제로 장내 미생물을 제거하거나, 무균 마우스에 분변(고염사료 섭
2025-06-02효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다.
2025-04-17