〈 한진희 교수, 장진호 박사 〉
“생쥐 실험을 통해 포식자의 냄새 자극에 대한 본능적 공포 반응을 결정하는 전두엽-편도체 뇌신경회로를 발견했습니다. 공포에 대한 선천적인 반응이 뇌 속에 어떤 식으로 코딩됐는지를 보여주며 공황장애, 외상 후 스트레스 장애 등의 불안 및 공포 뇌질환 치료 기술에 활용될 것입니다.”
우리 대학 생명과학과 한진희 교수와 한국뇌연구원(KBRI) 뇌신경망연구부 박형주 박사 공동 연구팀이 동물의 공포에 대한 선천적인 행동 반응이 발생하게 만드는 뇌신경회로를 발견하고 그 원리를 밝혔다.
장진호 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7월 16일자 온라인 판에 게재됐다.
골목의 모퉁이를 돌아설 때 갑자기 튀어나온 자동차 때문에 깜짝 놀라며 얼어붙는 듯이 몸이 저절로 멈춘 경험은 한 번쯤은 겪어봤을 것이다. 이는 ‘동결(freezing)’이라 불리는 대표적 공포 반응이다.
만약 자동차 앞에서 몸이 멈추지 않았다면 큰 사고로 이어졌을 수 있다. 이처럼 포식자나 위험한 물체와 맞닥뜨렸을 때 적절한 공포 반응을 나타내는 것은 사람과 동물이 위협으로부터 살아남을 가능성을 높여주는 역할을 한다. 이처럼 정상적인 공포, 불안 반응은 인간과 동물의 생존을 위해 필수적인 기능이다.
그러나 뇌신경학자들은 공포 반응을 조절하는 신경회로의 이면에 주목한다. 극도의 스트레스나 지속적인 생존의 위협에 노출된 사람들에게서 공포 반응을 조절하던 두뇌 회로가 고장난 듯 기능 이상을 보이는 현상이 존재하기 때문이다. 최근 미디어를 통해 익숙해진 공황장애, 외상 후 스트레스 장애 등이 이러한 기능 이상으로 인해 발병한다.
위와 같은 질환을 앓는 사람들은 수개월 이상의 상담 및 약물 치료를 통해야만 과호흡, 통제되지 않는 불안감, 불면증 등의 증상을 극복한 후 일상에 복귀할 수 있다. 이러한 이유로 뇌신경회로가 올바르게 작용하는 원리를 이해해야만 질환의 효율적인 치료가 가능하다.
한 교수 연구팀은 전측대상회 피질(ACC, anterior cingulate cortex)라는 전두엽의 기능에 주목했다. 신체적인 고통에 반응하고 통증 정보를 처리하는 뇌 영역으로 알려진 전측대상회 피질은 복잡한 두뇌 중에서도 가장 고도의 연산 기능을 수행할 수 있는 전전두엽 피질(PFC, prefrontal cortex)의 일부를 차지하고 있다.
그 동안 전두엽 뇌 영역이 학습을 통해 획득하는 후천적인 공포 조절 기능을 담당한다는 사실이 동물 실험 등으로 규명됐지만 선천적 공포조절 기능은 알려진 바가 없었다.
핵심 실험을 수행한 1저자인 장진호 박사는 작은 발상의 전환을 언급했다. “교수님이 학습된 공포 반응이 아닌 본능적 공포 반응을 통해 실험을 해보자는 독특한 제안을 하셨습니다. 해외 연구진들도 전전두엽 피질 두뇌 회로가 공포 반응을 조절하는 원리는 연구하지만, 포식자에 대한 본능적 반응에는 아무도 주목하지 않았습니다. 데이터 해석에 어려움을 겪고 있었는데 발상의 전환 이후 놀라운 데이터를 꾸준히 얻을 수 있었습니다.”
연구팀은 빛을 이용해 실시간으로 뉴런의 활성을 조절하는 광유전학 기술을 생쥐의 전측대상회 피질에 적용했다. 생쥐들을 포식자인 여우의 냄새에 노출시킨 상태에서 전측대상회 피질 영역을 억제, 자극해 반응 변화를 살폈다.
전측대상회 피질 영역의 뉴런을 억제하자 여우 냄새에 대한 동결 공포 반응이 크게 증폭됐고, 반대로 전측대상회 피질 영역을 자극했을 때는 공포 반응이 감소했다. 또한 전측대상회 피질 자극은 트라우마 기억에 대한 학습된 공포 반응도 강하게 억제하는 효과를 보였다.
연구팀은 전측대상회 피질 영역 내에서 편도체로 연결을 맺은 일부 뉴런들의 성질을 규명했다. 한 교수는 회로망 연구의 중요성을 설명했다. “두뇌 영역에는 전혀 다른 기능의 뉴런들이 공존하고 있으며 이들은 각기 다른 하위 영역으로 연결을 보내는 경우가 많습니다. 뇌 영역의 기능을 올바로 이해하기 위해 회로망에 따라 뉴런의 종류를 구분해야 하는 이유입니다.”
연구팀은 먼저 다양한 신경망 추적(neuronal tracer) 기법을 활용해 전측대상회 피질의 하위 연결망을 탐색했다. 그 중 공포 반응의 출력에 중요한 뇌구조로 잘 알려진 배외측 편도체핵(BLA, basolateral nucleus of amygdala)에서 전측대상회 피질의 주요 연결망을 관찰했다.
한국뇌연구원의 박형주 박사 연구팀은 전기 생리학 방법을 이용해 전측대상회 피질-배외측 편도체핵 연결망이 단일 시냅스 흥분성 연결로 구성됨을 증명했다.
연구팀은 나아가 전측대상회 피질-배외측 편도체핵 하위 연결망이 전측대상회 피질과 동일한 선천적 공포 조절 기능을 수행함을 규명했다. 이 하부 회로를 억제시키자 여우 냄새에 대한 공포 반응이 증가됐고, 같은 회로를 자극시키자 공포 반응이 감소했다.
또한 코요테, 들쥐(들쥐는 생쥐를 잡아먹는 포식자이다)를 사용한 보강 실험을 통해 전측대상회 피질-배외측 편도체핵 회로의 선천적 공포 행동 조절 기능을 명확히 규명했다.
한 교수는 “선천적 위협 자극에 대한 공포 행동반응을 코딩하고 있는 뇌 속 핵심 신경회로를 발견했다는 점에서 매우 중요한 학술적 의미가 있습니다. 향후 전측대상회 피질 신경회로를 표적으로 하는 외상 후 스트레스 장애 치료기술 개발의 근거가 될 것입니다”고 말했다.
이번 연구는 뇌과학 원천기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. ACC 영역의 활성 조절에 의한 본능적 공포 반응 증폭 및 감소
우리 대학 화학과 김형준 교수 연구팀이 GIST 신소재공학부 최창혁 교수 연구팀과 공동 연구를 통해 전기화학 분야의 오랜 난제 중 하나인 전기 이중층 구조를 이론적으로 규명하는 데 성공했다고 27일 밝혔다. 태양광 발전 등 친환경적으로 생산된 전기를 화학연료의 형태로 변환 및 저장하는 기술은 현재 인류가 직면하고 있는 에너지-환경 문제를 해결할 수 있는 가장 효율적인 미래전략이다. 2019년 리튬이온 배터리의 노벨 화학상 수상에서도 볼 수 있듯이, 전기화학 기술은 이러한 지속 가능한 탄소 중립 사회의 구축에 있어 가장 중요한 코어 기술로 여겨진다. 그러나 전기화학 분야에서 교과서에도 등장하는 100년 가까운 오래된 난제 중 하나가 있는데, 이는 바로 `전기 이중층'이라 불리는 특별한 액체 구조를 밝혀내는 것이다. 전기 이중층은 전기를 가한 금속 전극 주변에 액체 속의 이온이 쌓이면서 생성되는 특이한 층 구조를 의미한다. 이 구조적 특성에 따라 에너지 변환/저장 성능이 결정
2022-01-27우리 대학 기계공학과 김정원 교수와 물리학과 이한석 교수 공동연구팀이 광학 칩과 광섬유를 이용해 손바닥만 한 작은 장치로부터 2조분의 1(5×10-13) 수준의 주파수 안정도를 가지는 초안정 마이크로파를 발생하는 기술을 개발했다고 26일 밝혔다. 이 새로운 기술을 이용하면 기존의 마이크로파 발생 기술들보다 월등하게 우수한 위상잡음과 주파수 안정도의 마이크로파를 핸드폰 크기 면적의 작은 장치로부터 생성할 수 있어, 향후 5G/6G 통신, 전파망원경을 이용한 천체 관측, 군용 레이더, 휴대용 양자 센서 및 초고속 신호 분석 기술 등의 다양한 분야에서 획기적인 성능 향상이 가능하다. 우리 대학 기계공학과 권도현 박사(現 한국표준과학연구원)와 나노과학기술대학원 정동인 박사가 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 19일 字에 게재됐다. (논문명: Ultrastable micro
2022-01-26우리 대학 신소재공학과 정연식 교수, 전덕영 명예교수, 한국전자통신연구원(ETRI) 권병화 박사 공동 연구팀이 차세대 디스플레이 소자에 적용 가능한 신개념 금속 산화물 복합 나노소재 개발에 성공했다고 19일 밝혔다. KAIST-ETRI 공동 연구팀은 특정 금속 산화물 나노입자가 다른 산화물 내부에서 나노미터(nm) 크기로 분산될 경우, 접촉면(인터페이스)에서 전하가 교환되면서 전하 전달 복합체(Charge transfer complex)를 형성하는 새로운 현상을 발견했다. 연구팀은 이를 유기발광다이오드(OLED) 등 고부가가치 디스플레이에 적용해 기존 상용 유기 소재 기반의 소자 성능을 뛰어넘는 데 성공했다. 오는 2월에 우리 대학 신소재공학 박사학위 취득 예정인 김무현 연구원이 주도하고 조남명 박사, ETRI 주철웅 선임연구원 등이 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스(Nature Communications)' 1월 10일 字 온라인판에 게재됐다. (논문
2022-01-24우리 대학 신소재공학과 박병국 교수 연구팀이 차세대 비휘발성(Non-volatile) 메모리인 *스핀궤도토크 자성메모리(SOT-MRAM)의 스위칭 분극을 전기장 인가를 통해 임의로 제어하는 소재 기술을 개발했다고 21일 밝혔다. * 스핀궤도토크 자성메모리: 면방향 전류에서 발생하는 스핀전류를 이용해 자화 방향을 제어하는 동작 방식으로 기존의 스핀전달토크 자성메모리(STT-MRAM) 보다 동작 속도가 10배 이상 빠른 장점이 있다. 연구팀은 이 결과를 이용해 하나의 소자에서 다양한 논리연산이 가능함을 보임으로, 기억과 연산 기능을 동시에 수행하는 스마트 소자의 개발 가능성을 높였다. 특히 이 기술은 차세대 지능형 반도체로 개발되는 프로세싱-인-메모리 (PIM)에 적용할 수 있을 것으로 기대된다. PIM (processing-In-Memory) 기술은 메모리 공간에서 로직 기능을 수행해 프로세서에서 처리하는 데이터양을 획기적으로 줄임으로써, 기존 컴퓨팅 기술인 폰노이만 구조의
2021-12-21우리 연구진이 인터넷을 이용해 뇌 신경회로를 원격 제어할 수 있는 무선 네트워크 기술을 개발했다. 이 기술을 활용하면 시간과 장소에 구애받지 않고 목표 동물의 뇌 신경회로를 정교하게 제어할 수 있다. 우리 대학 전기및전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis), 미국 콜로라도 대학교(University of Colorado Boulder) 연구팀과의 공동 연구를 통해 사물인터넷 기반의 뇌 신경회로 원격제어 시스템을 개발했다고 8일 밝혔다. 이번 개발 기술은 많은 시간과 인력이 있어야 하는 뇌 연구 및 다양한 신경과학 연구를 자동화시켜 다양한 퇴행성 뇌 질환과 정신질환의 발병 기전 규명과 치료법 개발의 가속화에 크게 기여할 것으로 기대된다. 또한, 먼 거리에 있는 환자의 질환을 원격으로 치료하는 원격 의료 구현에도 활용될 수 있을 것으로 예상된다. 우리 대학 전기및전자공학부 라자 콰지(Raza Qaz
2021-12-08