< 김기응 교수 >
우리 대학 AI대학원 김기응 교수 연구팀(이정관, 함동훈 석사과정, 장영수 박사과정)은 인공지능 대화 시스템 분야 대표적 국제 경진대회인 제8회 대화시스템기술챌린지(The Eighth Dialogue System Technology Challenge; DSTC8)의 다중 도메인 태스크 완수(Multi-Domain Task Completion) 부문에서 우승을 차지했다.
마이크로소프트 리서치, IBM 리서치, 아마존 알렉사 AI가 공동주최한 대화시스템기술챌린지는 2019년 6월 데이터셋 공개 이후 약 3개월에 걸쳐 진행됐다. 연구팀은 사람이 직접 평가하는 인적 평가에서 68.32%의 성공률로 1위를 차지했고, 언어 이해 점수와 응답 적절성 점수에서 큰 차이를 보였다(결과 안내 : https://convlab.github.io/ ).
이 대회에서는 호텔, 식당, 명소 등 다양한 주제가 등장할 수 있는 여행 정보 안내 상황에서 사용자와의 대화를 통해 ▲ 사용자 요구사항 이해 ▲ 데이터베이스에서 요청한 정보 검색 ▲ 예약 시스템과의 연동 등의 수 있는 목적지향 대화 챗봇(chat-bot)을 만드는 것을 목표로 한다.
이러한 업무를 위한 기존 대화 시스템은 사용자 발화 이해(Natural Language Understanding; NLU), 대화 상태 추적(Dialogue State Tracking; DST), 대화 정책 결정(Dialogue Policy), 시스템 발화 생성(Natural Language Generation; NLG)의 총 네 단계를 수행하는 특화된 모듈로 구성돼 독립적으로 개발하고 통합한다.
김 교수 연구팀은 언어생성 모델인 GPT-2를 기반으로 위의 네 단계를 모두 수행하는 하나의 심층 신경망 모델을 제안했다. 연구팀이 개발한 대화 시스템은 언어생성 모델의 강력한 성능을 활용하는 창의적인 훈련 기법을 선보임으로써 기존의 방법론에 비해 훈련 과정을 대폭 단순화했다.
김기응 교수는 “최근 딥러닝 언어모델들이 다양한 자연어처리 태스크에 활용되는 추세인데, 복잡한 목적지향 대화처리에도 간결한 훈련 방법을 통해 우월한 성능을 보일 수 있음을 공식적으로 인정받은 것에 의의가 있다”라며, “아직 해결해야 할 연구 이슈가 많지만, 이 연구를 출발점으로 삼은 새로운 개발방법론들이 많이 등장할 것으로 기대한다”라고 말했다.
이번 연구는 2020년도 AAAI 학술대회의 대화시스템기술챌린지 워크숍에서 발표될 예정이다. 이 연구 결과는 산업통상자원부의 산업기술혁신사업 지원의 실내용 음성대화 로봇을 위한 원거리 음성인식 기술 및 멀티 태스크 대화처리 기술 개발 과제 수행을 통해 이뤄졌다.
우리 대학과 다임리서치는 2025년 6월 25일 KAIST 본원 기계공학동(N7, 1601호)에서 “피지컬 AI와 SDx가 창조하는 제조와 자동화산업의 미래”라는 주제로 국내 최초 피지컬 AI 기반 제조 혁신 포럼을 개최하였다. 최근 인공지능(AI)은 단순한 언어 처리나 데이터 분석을 넘어 현실 공간에서 직접 작동하는 ‘피지컬 AI (Physical AI)’ 시대로 진입하고 있다. 챗GPT와 같은 언어 모델이 인간의 사고를 모사하는 ‘언어형 AI’였다면, 피지컬 AI는 공간과 시간의 맥락을 인식하고 물리적 행동을 수행하는 “움직이는 지능”으로서 제조, 물류, 건설, 농업 등 산업 전반을 혁신하는 새로운 산업의 기회로 떠오르고 있다. 포럼은 크게 두 개 세션으로 구성되며, 첫 번째 세션에서는 현대자동차의 민정국 상무가 세계 최초로 현대차가 도입한 Software-Defined Factory (
2025-06-25새 정부 출범과 함께 AI 및 과학기술 분야에 대한 사회적 관심이 크게 높아진 가운데, 우리 대학은 과학기술을 기반으로 국가 혁신을 주도하고 인류의 문제 해결에 앞장서는‘AI 중심 가치 창출형 과학기술특성화대학’으로 거듭날 계획임을 24일 밝혔다. 대한민국이 기술 주도형 사회로 대전환을 맞이하는 시점에서 KAIST는 지난 반세기 동안 국가 발전사의 '스타터킷(Starter Kit)' 역할을 수행해온 경험을 토대로, 단순한 교육·연구기관을 넘어 새로운 사회적 가치를 창출하는 글로벌 혁신 허브로의 도약을 준비하고 있다. 특히 우리 대학은 대한민국이 인공지능 주요 3개국(G3)에 도약할 수 있도록 전 국민이 소외 없이 AI를 활용할 수 있는 'AI 기본사회' 실현을 비전으로 제시했다. 이를 위해 KAIST가 주관하는 대한민국을 대표하는 ‘국가AI연구거점’사업(책임자 김기응)을 통해 AI 기술을 기반으로 산업 경쟁력을 제고하고 사회
2025-06-24생성형 AI 기술이 발전하면서 이를 악용한 온라인 여론 조작 우려가 커지고 있다. 이에 따른 AI 생성글 탐지 기술도 개발되었는데 대부분 영어로 된 장문의 정형화된 글을 기반으로 개발돼, 짧고(평균 51자), 구어체 표현이 많은 한국어 뉴스 댓글에는 적용이 어려웠다. 우리 연구진이 한국어 AI 생성 댓글을 탐지하는 기술을 개발해서 화제다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 국가보안기술연구소(국보연)와 협력해, 한국어 AI 생성 댓글을 탐지하는 기술 'XDAC'를 세계 최초로 개발했다고 23일 밝혔다. 최근 생성형 AI는 뉴스 기사 맥락에 맞춰 감정과 논조까지 조절할 수 있으며, 몇 시간 만에 수십만 개의 댓글을 자동 생성할 수 있어 여론 조작에 악용될 수 있다. OpenAI의 GPT-4o API를 기준으로 하면 댓글 1개 생성 비용은 약 1원 수준이며, 국내 주요 뉴스 플랫폼의 하루 평균 댓글 수인 20만 개를 생성하는 데 단 20만 원이면 가능할 정도다.
2025-06-24최근 텍스트 기반 이미지 생성 모델은 자연어로 제공된 설명만으로도 고해상도·고품질 이미지를 자동 생성할 수 있다. 하지만, 대표적인 예인 스테이블 디퓨전(Stable Diffusion) 모델에서 ‘창의적인’이라는 텍스트를 입력했을 경우, 창의적인 이미지 생성은 아직은 제한적인 수준이다. KAIST 연구진이 스테이블 디퓨전(Stable Diffusion) 등 텍스트 기반 이미지 생성 모델에 별도 학습 없이 창의성을 강화할 수 있는 기술을 개발해, 예컨대 뻔하지 않은 창의적인 의자 디자인도 인공지능이 스스로 그려낼 수 있게 됐다. 우리 대학 김재철AI대학원 최재식 교수 연구팀이 네이버(NAVER) AI Lab과 공동 연구를 통해, 추가적 학습 없이 인공지능(AI) 생성 모델의 창의적 생성을 강화하는 기술을 개발했다. 최 교수 연구팀은 텍스트 기반 이미지 생성 모델의 내부 특징 맵을 증폭해 창의적 생성을 강화하는 기술을 개발했다. 또한, 모
2025-06-19우리 대학은 과학기술정보통신부(장관 유상임, 이하 과기정통부) 및 DGIST, GIST, UNIST*와 협력하여, AI 융합(AI+S&T) 첨단 전략 연구를 이끌 ‘이노코어(InnoCORE) 연구단’을 출범하고, 이를 통해 세계 최고 수준 박사후연구원(Postdoctoral researcher) 최대 200명 채용을 본격 추진한다고 16일 밝혔다. * DGIST(대구경북과학기술원),, GIST(광주과학기술원), UNIST(울산과학기술원) ‘이노코어(InnoCORE) 연구단’은 AI 융합 분야의 혁신(Innovation)을 이끌 핵심(Core) 연구인력 육성을 목표로, AI+과학기술 분야의 고급 연구인재를 집중 양성·유치한다. 이는 글로벌 AI 인재 확보 경쟁이 가속화되는 가운데 국내 인재의 두뇌유출 방지 및 해외 우수 인재 유치의 전략적 대응책이다. 우리 대학은 이번 사업을 통해 국내·외 최상위 박사
2025-06-17