
< 김기응 교수 >
우리 대학 AI대학원 김기응 교수 연구팀(이정관, 함동훈 석사과정, 장영수 박사과정)은 인공지능 대화 시스템 분야 대표적 국제 경진대회인 제8회 대화시스템기술챌린지(The Eighth Dialogue System Technology Challenge; DSTC8)의 다중 도메인 태스크 완수(Multi-Domain Task Completion) 부문에서 우승을 차지했다.
마이크로소프트 리서치, IBM 리서치, 아마존 알렉사 AI가 공동주최한 대화시스템기술챌린지는 2019년 6월 데이터셋 공개 이후 약 3개월에 걸쳐 진행됐다. 연구팀은 사람이 직접 평가하는 인적 평가에서 68.32%의 성공률로 1위를 차지했고, 언어 이해 점수와 응답 적절성 점수에서 큰 차이를 보였다(결과 안내 : https://convlab.github.io/ ).
이 대회에서는 호텔, 식당, 명소 등 다양한 주제가 등장할 수 있는 여행 정보 안내 상황에서 사용자와의 대화를 통해 ▲ 사용자 요구사항 이해 ▲ 데이터베이스에서 요청한 정보 검색 ▲ 예약 시스템과의 연동 등의 수 있는 목적지향 대화 챗봇(chat-bot)을 만드는 것을 목표로 한다.
이러한 업무를 위한 기존 대화 시스템은 사용자 발화 이해(Natural Language Understanding; NLU), 대화 상태 추적(Dialogue State Tracking; DST), 대화 정책 결정(Dialogue Policy), 시스템 발화 생성(Natural Language Generation; NLG)의 총 네 단계를 수행하는 특화된 모듈로 구성돼 독립적으로 개발하고 통합한다.
김 교수 연구팀은 언어생성 모델인 GPT-2를 기반으로 위의 네 단계를 모두 수행하는 하나의 심층 신경망 모델을 제안했다. 연구팀이 개발한 대화 시스템은 언어생성 모델의 강력한 성능을 활용하는 창의적인 훈련 기법을 선보임으로써 기존의 방법론에 비해 훈련 과정을 대폭 단순화했다.
김기응 교수는 “최근 딥러닝 언어모델들이 다양한 자연어처리 태스크에 활용되는 추세인데, 복잡한 목적지향 대화처리에도 간결한 훈련 방법을 통해 우월한 성능을 보일 수 있음을 공식적으로 인정받은 것에 의의가 있다”라며, “아직 해결해야 할 연구 이슈가 많지만, 이 연구를 출발점으로 삼은 새로운 개발방법론들이 많이 등장할 것으로 기대한다”라고 말했다.
이번 연구는 2020년도 AAAI 학술대회의 대화시스템기술챌린지 워크숍에서 발표될 예정이다. 이 연구 결과는 산업통상자원부의 산업기술혁신사업 지원의 실내용 음성대화 로봇을 위한 원거리 음성인식 기술 및 멀티 태스크 대화처리 기술 개발 과제 수행을 통해 이뤄졌다.
신약이 효과를 내려면 약물이 몸속 단백질의 특정 부위에 정확히 결합해야 한다. 우리 대학 연구진이 단백질을 이루는 기본 단위인 펩타이드 분자의 접힘 구조를 원자 수준에서 정밀하게 제어할 수 있는 기술을 개발했다. 이번 연구로 원자 하나의 변환이 분자의 형태를 바꾸는 ‘설계 스위치’처럼 작용한다는 사실이 밝혀지면서, AI 기반 맞춤형 신약 설계의 핵심 플랫폼 기술로 주목받고 있다. 우리 대학은 이노코어 AI-CRED 혁신신약 연구단(단장 이희승 석좌교수)이 출범 후 첫 연구성과로, 단백질 분자 구조인 펩타이드의 아주 작은 변화인 ‘티오아마이드(thioamide) 변환’을 통해 분자의 접힘 방식을 정밀하게 조절할 수 있는 새로운 원리를 규명했다고 16일 밝혔다. *티오아마이드 변환(thioamide substitution): 펩타이드는 원래 C(=O)–NH(탄소–산소–질소로 이루어진 결합)인데 여기서 산소
2025-11-16우리 대학은 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 ‘루닛 컨소시움’ 주요 참여기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 14일 밝혔다. 이번 사업을 통해 KAIST는 바이오·의료 데이터 전주기를 아우르는‘의과학 특화 AI 파운데이션 모델’을 개발하며, AI 기반 생명과학 혁신 생태계 조성을 주도할 계획이다. ‘루닛 컨소시움’에는 루닛을 중심으로 트릴리온랩스, 카카오헬스케어, 아이젠사이언스, SK바이오팜, 리벨리온 등 7개 기업과, KAIST, 서울대, NYU, 국민건강보험공단 일산병원, 용인세브란스병원 등 9개 의료기관 및 연구기관이 함께 참여한다. 본 컨소시엄은 최신 B200 GPU 256장을 지원받아, 의료 데이터를 처음부터 끝까지 연결해 분석하는 AI 시스템인‘증거사슬(Chai
2025-11-14우리 대학이 추진 중인 ‘K-글로벌 딥테크 창업 전략’이 구체적인 성과로 이어지고 있다. 우리 대학은 창업원이 육성한 의료 AI 솔루션 기업 ㈜배럴아이(대표 배현민)가 글로벌 헬스케어 선도기업으로부터 약 140억 원(미화 1,000만 달러) 규모의 전략적 시리즈 A 투자를 유치하며, KAIST 딥테크 창업 생태계의 대표 성공 사례로 자리매김했다고 14일 밝혔다. ■ KAIST, 연구기반 딥테크 창업 전주기 지원체계 강화 KAIST 창업원은 과학기술 기반 창업을 통한 혁신 생태계 조성을 목표로 기술사업화·창업보육·투자연계·글로벌 진출 등 전주기 지원체계를 운영하고 있다. ‘K-글로벌 딥테크 창업 전략’을 중심으로 연구성과의 시장 진입과 글로벌 투자 유치를 촉진하며, 대한민국을 대표하는 딥테크 창업 허브로 성장하고 있다. KAIST는 특히 AI, 바이오헬스, 반도체, 미래모빌리티 등 첨단 산업 분
2025-11-13목표 과업에 좋은 성능을 보이는 신경망 구조를 찾는 것은 큰 비용이 소요되어, 신경망의 성능을 효율적으로 예측하는 방법론이 활발히 연구되었다. 우리 대학 김재철AI대학원 소속 김선우 박사과정, 황현진 석박통합과정(지도교수 신기정)은 그래프 기반 사전학습을 이용하여, 기존의 효과적인 방법론의 성능을 개선하면서, 약 43배 빠른 예측 속도를 보이는 예측 기법을 개발하였다. 인공지능 모델은 최근 다양한 분야에서 괄목할 성과를 거두었지만, 모델의 신경망 구조가 해당 모델의 성능에 영향을 크게 미치는 특징이 있다. 그러나 목표 과업에 적합한 신경망 구조를 알고자 직접적으로 해당 신경망 구조를 학습 및 평가하는 방식은 큰 비용이 소요된다. 이를 해결하기 위해, 다른 인공지능 모델을 사용하여 특정 신경망 구조의 성능을 예측하는 방식이 사용되었다. 경량화된 예측 모델은 예측 속도는 빠르나 예측 성능이 낮다는 한계가 있었고, 최근 개발된 방법론은 예측 정확도는 높으나 예측 속도가 매우 느린 문
2025-11-11우리 대학은 11월 14일, 컴퓨터 과학 분야 세계적 권위의 학술대회인 ‘정보 및 지식관리 학회(The 34th International Conference on Information and Knowledge Management, CIKM 2025)’에서‘인간 중심 AI: 설명가능성과 신뢰성에서 실행 가능한 윤리까지(Human-Centric AI: From Explainability and Trustworthiness to Actionable Ethics)’를 주제로 국제 워크숍(워크샵 조직위원장: KAIST 김재철AI대학원 최재식 교수)을 개최할 예정이다. 이번 행사는 KAIST 김재철AI대학원이 주도하고 서울대, 서강대, 성균관대, 한국전자통신연구원(ETRI), 독일 TU Berlin 등 국내외 유수 기관이 공동으로 참여하는 자리다. AI 기술의 잠재적 위험을 줄이고 책임 있는 활용을 위한 ‘인간 중심 AI&rsquo
2025-11-07