
< (왼쪽부터) 반도체공학대학원 김은영 박사과정, 신소재공학과 김경민 교수, 신소재공학과 김도훈 박사과정, (상단사진 왼쪽부터) 신소재공학과 정운형 박사, 신소재공학과 김근영 박사 >
뉴랜지스터(Neuransistor)는 ‘뉴런(Neuron) + 트랜지스터(Transistor)’의 합성어로 뇌의 뉴런 특성을 구현하는 트랜지스터라는 의미로 만들어진 새로운 용어이다. 이는 뇌 속 신경세포(뉴런)의 흥분과 억제 반응을 모방하여 시간에 따라 달라지는 정보를 스스로 처리하고 학습할 수 있는 차세대 인공지능 하드웨어의 핵심 반도체 소자다. KAIST 연구진이 뉴랜지스터의 개념을 제시하고 최초로 뉴랜지스터를 개발하는데 성공했다.
우리 대학 신소재공학과 김경민 교수 연구팀이 시간에 따라 변화하는 정보를 효과적으로 처리할 수 있는 액체 상태 기계(Liquid State Machine, 이하 LSM)*의 하드웨어 구현을 가능케 하는 뉴랜지스터 소자 개발에 성공했다.
* 액체상태 기계(LSM): 생물학적 신경망의 동적 특성을 모사해, 시간에 따라 변화하는 입력 데이터를 처리하는 스파이킹 뉴럴 네트워크 모델
현재의 컴퓨터는 동영상과 같이 시간 흐름에 따라 변하는 데이터인 시계열 데이터를 분석하는데 복잡한 알고리즘을 사용하며, 이는 매우 많은 시간과 전력 소모를 필요로 했다.

< 그림 1. 뉴랜지스터는 흥분성(EPSP)과 억제성(IPSP) 신경 동역학을 동시에 구현할 수 있으며, 뇌와 유사한 LSM 구조에 적용될 수 있다. 뇌의 신경망은 이러한 흥분과 억제를 통해 E/I 균형을 유지하며 정보를 처리하고, LSM 또한 이러한 노드를 기반으로 아날로그 입력을 처리하고 출력을 생성한다. 뉴랜지스터 기반 하드웨어 LSM에서는 각각의 뉴랜지스터가 입력을 다양한 방식으로 인코딩하고, 이들의 가중 합을 통해 최종 출력이 생성된다. >
김경민 교수 연구팀은 이러한 난제를 해결하며 뇌 속 뉴런처럼 흥분하거나 억제되는 반응을 전기 신호만으로 동시에 구현하여 시계열 데이터의 정보 처리에 특화된 단일 반도체 소자를 새롭게 설계했다.
해당 소자는 산화 티타늄(TiO2)과 산화 알루미늄(Al2O3)이라는 두 산화물층을 쌓아 만든 구조로, 두 층이 맞닿는 계면에서는 전자가 자유롭게 빠르게 이동하는 이차원 전자가스(2DEG)** 층이 형성된다. 그리고, 이 층의 양 끝에는 흥분성 및 억제성 신호에 모두 반응하는 뉴런형 소자가 연결되어 있다.
**2DEG(Two-Dimensional Electron Gas): 계면에서 전도성이 우수한 전자 층이 형성되는 현상으로, 높은 이동도와 빠른 응답속도를 제공함
이러한 독특한 구조 덕분에 뉴랜지스터는 게이트 전압의 극성에 따라 소스와 드레인 간에 흥분성(EPSP) 또는 억제성(IPSP) 반응을 선택적으로 구현할 수 있다.
이 소자는 또한 기존 LSM 구현에서 필수적이었던 복잡한 입력 신호 전처리 과정(마스킹)도 간단히 해결했다. 기존에는 '마스킹' 기능 구현이 매우 복잡했으나, 뉴랜지스터는 소스 전극에 가해지는 전압을 조절함으로써 간단하게 마스킹 기능을 구현하고, 시계열 입력 신호를 다차원의 출력 정보로 정확하게 변환하였다. 또한, 높은 내구성과 소자 간의 균일성도 확보해 실용성도 역시 뛰어났다.

< 그림 2. 뉴랜지스터 소자의 특성을 활용한 혼돈 상태 예측 특성. 뉴랜지스터 소자는 게이트 전압 조건에 따라 양방향 전도 특성을 보이며, 특히 소스 전압을 통한 추가적인 신호 변조가 가능하여 풍부한 시공간 동역학을 구현할 수 있다. 이를 이용하여 로렌츠 어트랙터와 같은 복잡한 시계열 데이터 학습 및 예측이 가능하다. >
연구팀은 뉴랜지스터를 기반으로 복잡한 시계열 데이터를 처리하는 ‘두뇌형 정보처리 시스템’인 LSM을 구현하였다. 실험 결과, 뉴랜지스터를 활용하는 경우 기존의 방식보다 10배 이상 낮은 오차율과 높은 예측 정확도를 기록했고, 학습 속도도 더 빨라졌다.
김경민 교수는 “이번 연구는 인간 뇌의 신호 처리 방식과 유사한 구조를 실제 반도체 소자로 구현했다는 데 큰 의의가 있다”며 “이 기술은 향후 뇌신경 모사형 AI, 예측 시스템, 혼돈 신호 제어 등 다양한 분야에서 중요한 역할을 할 것으로 기대된다”고 전했다.
이번 연구는 신소재공학과 정운형 박사, 김근영 박사가 공동 제1 저자로 참여했으며, 재료 분야 세계적 권위의 국제 학술지 ‘어드밴스드 머터리얼즈(Advanced Materials, IF: 27.4)’에 2025년 4월 8일 字 게재됐다.
(논문명: A Neuransistor with Excitatory and Inhibitory Neuronal Behaviors for Liquid State Machine, DOI: 10.1002/adma.202419122)
한편, 이번 연구는 나노종합기술원, 한국연구재단의 지원을 받아 수행됐다.
우리 대학 바이오및뇌공학과 박성홍 교수 연구실(연구실명: 자기공명영상 연구실, Magnetic Resonance Imaging Laboratory)이 MICCAI 국제학회의 TopBrain 뇌 혈관 Segmentation Challenge에서 1등상을 수상했다. MICCAI의 TopBrain Challenge는 뇌혈관을 가장 정확히 구획화(Segmentation)하는 딥러닝 네트워크 개발을 놓고 매년 전세계적으로 경쟁하는 대회로서 올해로 3회째를 맞고 있다. 이전 두 대회는 TopCoW라는 이름으로 대뇌동맥고리(circle of willis) 영역 구획화로만 치러졌고, 올해 처음 TopBrain이라는 이름으로 뇌 전체 혈관 구획화로 확장되었다. MICCAI (Medical Image Computing and Computer Assisted Intervention)는 매년 전세계 의료영상연구자들의 모임으로써 올해는 대전 convention center (DCC)에서 전세계 3천명
2025-10-13우리 대학은 의과학대학원 이정호 교수의 교원 창업기업인 소바젠(각자대표 박철원·이정호)이 난치성 뇌전증을 치료하기 위한 혁신적인 RNA 신약 후보를 개발해, 총 7,500억 원 규모의 글로벌 기술 수출에 성공했다고 9일 밝혔다. 이번 성과는 KAIST의 기초 의과학 연구에서 출발한 혁신적 발견이 실제 신약 개발과 세계 시장 진출로 이어진 대표적 사례로 주목받고 있다. 이정호 교수 연구팀은 난치성 뇌전증과 악성 뇌종양 같은 치명적 뇌 질환의 원인이‘뇌 줄기세포에서 생긴 후천적 돌연변이(뇌 체성 돌연변이, Brain Somatic Mutation)’인 사실을 세계 최초로 규명해 네이처(Nature)와 네이처 메디슨(Nature Medicine) 등에 2015년, 2018년에 발표한 바 있다. 이후 신약 개발 전문가인 소바젠의 박철원 대표와 함께, 뇌전증의 원인 돌연변이 유전자인 MTOR를 직접 겨냥할 수 있는 RNA 신약(ASO, Antisen
2025-10-10사람의 뇌는 단순히 신호를 주고받는 연결(시냅스)만 조절하는 게 아니라, 개별 신경세포가 ‘상황에 맞게 스스로 예민해지거나 둔해지는’ 적응 능력인 ‘내재적 가소성’을 통해 정보를 처리한다. 하지만 기존 인공지능 반도체는 이런 뇌의 유연함을 흉내 내기 어려웠다. KAIST 연구진이 이번에 이 능력까지 구현한 차세대 초저전력 반도체 기술을 개발해 관심을 모으고 있다. KAIST(총장 이광형)는 신소재공학과 김경민 교수 연구팀이 뉴런이 과거 활동을 기억해 스스로 반응 특성을 조절하는 ‘내재적 가소성(intrinsic plasticity)’을 모방한 ‘주파수 스위칭(Frequency Switching) 뉴리스터(Neuristor)’를 개발했다고 28일 밝혔다. ‘내재적 가소성’은 같은 소리를 여러 번 들으면 점점 덜 놀라거나, 반복된 훈련을 통해 특정 자극에 더 빨리 반응하게
2025-09-29체외에서 배양한 뇌 신경조직은 뇌 연구를 단순화한 실험 모델로 널리 활용돼 왔으나, 기존 장치는 반도체 공정 기반으로 제작돼 형태 변형과 입체(3D) 구조 구현에 한계가 있었다. KAIST 연구팀은 발상의 전환으로 3D 프린터로 빈 통로 구조를 먼저 제작한 뒤, 그 통로를 전도성 잉크가 모세관 현상으로 저절로 채우게 해 전극·배선을 만드는 맞춤형 3D 뇌 신경 칩을 완성했다. 이번 성과는 뇌과학·뇌공학 연구 플랫폼의 설계 자유도와 활용성을 크게 높일 것으로 기대된다. 우리 대학은 바이오및뇌공학과 남윤기 교수 연구팀은 기존 반도체 공정 기반 제작 방식의 한계를 극복하고 ‘3D 미세전극 칩(3차원 공간에 배치된 다수의 미세전극을 통해 신경세포의 전기적 활동을 측정하고 자극할 수 있는 신경 인터페이스)’을 다양한 형태의 맞춤형 체외 배양칩 형태로 정밀하게 제작할 수 있는 플랫폼 기술을 개발하는데 성공했다고 25일 밝혔다. 기존 3D
2025-09-25사람마다 가지고 있는 유전자 차이가 어릴 때 뇌가 자라나는 과정에서는 크게 문제가 되지 않지만, 나이가 들어서 치매 등 뇌 질환이 생길 때는 왜 어떤 사람이 더 잘 걸리는지 오랫동안 수수께끼였다. 국내 연구진이 최근 뇌 속 별아교세포가 면역 반응을 켜고 끄는 스위치를 지니고 있으며, 이 스위치를 조절하는 핵심유전자를 알아내고 성인이 된 후 뇌 질환에 대한 개인의 취약성을 결정한다는 점을 세계 최초로 밝혀냈다. 향후 알츠하이머병의 퇴행성뇌질환을 포함한 다양한 뇌 면역 반응의 원인 규명과 치료 전략의 중요한 단서를 제공했다. 우리 대학은 생명과학과 정인경 교수와 기초과학연구원(원장 노도영, IBS) 혈관 연구단 정원석 부연구단장(겸 KAIST 생명과학과 교수) 공동연구팀이 별아교세포(astrocyte) 발달 과정에서 특정 유전자가 성인기 뇌 면역 반응 조절에 핵심 역할을 한다는 사실을 세계 최초로 규명했다고 24일 밝혔다. 연구팀은 쥐 모델을 활용해 뇌·척수에 차
2025-09-24