< 뇌인지과학과 백세범 교수 >
우리 대학 뇌인지과학과 백세범 교수가 세계적 권위의 과학 학술지인 사이언스 어드밴시스 (Science Advances)의 신경과학 (Neuroscience) 분과 부편집장(Associate Editor)으로 임명됐다고 14일 밝혔다.
이는 계산 신경과학 기반의 뇌 연구를 선도하고 있는 연구자인 백세범 교수의 탁월한 학문적 영향력과 학술적 소통 역량이 세계적으로 인정받은 성과다.
백세범 교수는 신경과학의 난제 중 하나였던 시각피질 뇌 지도 발생의 원리*를 세계 최초로 밝힌 이래, 지난 10여 년간의 연구를 통해 독창적인 이론 연구의 전문성을 인정받고 있다.
*시각피질 뇌 지도 발생의 원리: 포유류의 시각피질에서는 서로 다른 시각 정보(예: 색상, 방향 등)에 선택적으로 반응하는 신경세포들이 일정한 패턴을 이루며 배치되어 있는데 이를 기능성 뇌 지도(functional map)라고 함. 이 연구에서는 수학적 모델에 기반한 컴퓨터 시뮬레이션을 통하여 망막에 있는 신경세포들이 매우 단순한 물리적 상호작용에 따라 스스로 규칙적인 배열을 형성할 수 있으며 이렇게 형성된 구조가 시각피질에 투영되면서 다양한 기능성 뇌 지도가 만들어진다는 것을 설명하였음.
사이언스 어드밴시스는 미국 과학 진흥 협회(AAAS)가 발행하는 사이언스(Science) 저널의 온라인 자매지로, 과학 전 분야에 걸친 영향력 있는 연구를 다룬다. 2024년 기준 게재 승인 비율(acceptance rate)이 8.2%에 불과할 정도로 높은 수준의 연구 결과를 요구하며, 엄격한 검토 과정을 거친다.
백 교수는 신경과학 분과에서 연구 논문의 심사와 편집 업무에 참여하며, 전 세계 연구자들에게 중요한 과학적 발견을 전파하는 데 핵심적인 역할을 수행한다.
백 교수는 국내 1세대 계산신경과학자로서 이론적 모델 기반의 뇌 연구를 통해 신경과학의 다양한 현상들을 체계적으로 연계하여 설명하는 계산신경과학분야를 개척하고 있다.
최근에는 뇌신경망과 인공신경망의 비교에 기반한 인지 지능 발생 이론 연구들을 진행하며, 인간과 동물의 지능, 그리고 인공지능을 하나의 큰 틀에서 이해하려는 연구를 활발히 진행하고 있다.
백 교수는 그동안 스프링거-네이쳐(Springer-Nature)와 프론티어스(Frontiers) 그룹에서 발행하는 신경과학 저널들의 부편집장 및 편집위원으로 활동해 왔다. 2021년에는 KAIST 특이점 교수(Singularity Professor)에 임명되었으며, 2024년부터는 한국계산뇌과학회(CBrain) 회장직을 맡아 학회를 이끌고 있다.
백세범 교수는 “KAIST 교수진으로서 권위 있는 학술지의 편집위원으로 활동하게 되어 매우 기쁘며, 앞으로 뇌신경과학 분야의 다양한 연구 결과들의 심사 및 출판 과정을 진행하면서, 전 세계 연구자들과 교류를 통해 뇌신경과학 연구의 발전과 방향 설정에 기여하고 싶다”고 소감을 전했다.
현재 전 세계적으로 마이크로 및 나노급의 작은 입자 기반의 비생명체 자가 추진 로봇 기술은 활발하게 연구되고 있는 반면에, 세포와 같은 생명체 구성 요소를 직접 활용한 세포로봇 연구는 아직 초기 단계에 머물러 있다. 우리 연구진이 세포 기반 시스템의 자율적으로 이동하는 세포로봇을 개발하는데 성공했다. 향후 정밀 약물 전달이나 차세대 세포 기반 치료법의 원천기술로 활용될 수 있을 것으로 기대된다. 우리 대학 화학과 최인성 교수 연구팀이 외부 동력 장치나 복잡한 기계 구조 없이, 생체 부산물인 ‘요소(urea)’*를 연료로 사용하는 자가 추진 세포로봇을 개발했다고 30일 밝혔다. *요소(urea): 사람을 포함한 대부분의 동물 체내에서 단백질을 분해하면서 생기는 노폐물로 생명체 안에서는 단백질 대사 과정에서 암모니아를 독성이 낮은 형태로 전환하여 배출하는 중요한 역할을 함 연구팀이 구현한 세포로봇은 방향성을 갖고 스스로 이동할 수 있으며, 원하는 물질
2025-06-30로봇이 물체를 잡을 때나, 의료기기가 몸의 맥박을 감지할 때 촉각 센서는 손끝처럼 ‘눌림’을 느끼는 기술이다. 기존 센서들은 반응이 느리거나 여러 번 쓰면 정확도가 떨어지는 단점이 있었는데, 한국 연구진이 가벼운 숨결, 압력, 소리까지 정확하고 빠르게 감지할 수 있어, 일상적인 움직임부터 의료용 진단까지 폭넓게 사용할 수 있는 센서를 개발하는데 성공했다. 우리 대학 기계공학과 박인규 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국전자통신연구원(ETRI, 원장 방승찬)과의 공동연구를 통해 기존 촉각 센서 기술의 구조적 한계를 극복한 혁신적 기술을 개발했다고 23일 밝혔다. 이번 공동연구의 핵심은 ‘열성형 기반 3차원 전자 구조(Thermoformed 3D Electronics, T3DE)’를 적용해 유연성과 정밀성, 반복 내구성을 동시에 확보한 맞춤형 촉각 센서를 구현한 것이다. 특히, 소프트 엘라스토머(고
2025-06-23색은 빛의 파장이 인간의 눈에 인식되는 방식으로, 단순한 미적 요소를 넘어 물질의 성분이나 상태 같은 중요한 과학적 정보를 담고 있다. 분광기는 빛을 파장별로 분해해 물성을 분석하는 광학 장비로, 재료 분석, 화학 성분 검출, 생명과학 연구 등 다양한 과학 및 산업 분야에서 폭넓게 사용되고 있다. 기존의 고분해능 분광기는 크고 복잡해 일상 전반에 사용이 어려웠으나, 우리 연구진이 개발한 초소형 고해상도 분광기 덕분에 앞으로는 스마트폰이나 웨어러블 기기 속에서도 빛의 색 정보를 활용할 수 있을 전망이다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 이중층 무질서 메타표면*을 이용한 복원 기반 분광기 기술을 개발하는 데 성공했다고 13일 밝혔다. *이중충 메타표면: 두 겹의 무질서한 나노 구조층을 통해 빛을 복잡하게 산란시켜, 파장별로 고유하고 예측 가능한 스페클 패턴을 만들어내는 혁신적 광학 소자 기존의 고분해능 분광기는 수십 센티미터 수준으로 폼 팩터가 크고, 정확도를
2025-06-13스마트폰 같은 딱딱한 전자기기는 안정적인 성능을 제공하지만 착용시 불편함을 주는 반면, 얇고 유연한 웨어러블 기기는 착용감은 뛰어나지만 부드러운 특성 때문에 정밀한 조작에 한계가 있다. 국내 연구진이 온도에 따라 딱딱함과 부드러움을 자유자재로 전환할 수 있는‘액체금속 전자잉크’를 개발해, 가변강성을 갖춘 전자기기의 새로운 패러다임을 열고 있다. 우리 대학 전기및전자공학부 정재웅 교수 연구팀이 서울대 박성준 교수 연구팀, 우리 대학 신소재공학과 스티브 박 교수 연구팀과 공동연구를 통해, 상온에서 마이크로 스케일(머리카락보다 얇은 구조)의 미세 선폭 회로 인쇄가 가능하고 온도에 따라 딱딱함과 부드러움을 자유자재로 조절할 수 있는 액체금속 전자잉크를 개발했다고 4일 밝혔다. 연구팀이 개발한 전자잉크는 정밀한 인쇄가 가능한 물성과 우수한 전기전도성을 동시에 갖추고 있으며, 딱딱함과 부드러움을 자유자재로 조절할 수 있는 전자소자를 상온에서 정밀 제작할 수 있
2025-06-04기계공학과 경기욱 교수 연구팀이 피부에 부착하여 다양한 촉감을 전달할 수 있는 초경량의 얇고 유연한 인공근육기반 촉감 전달 패치를 개발했다. 최근 가상현실(virtual reality, VR)과 증강현실(augmented reality, AR)의 기술이 각광받으면서, 더욱 현실감을 증대시키기 위해서 시각과 청각뿐만 아니라 촉각을 전달하는 기술이 중요한 역할을 하고 있다. 또한 사용자가 로봇을 원격조종하여 세밀한 작업을 하기 위해서는, 세밀한 촉감 전달이 필요하다. 그러나 단순한 진동이나 압력을 넘어서, 세밀하고 다양한 촉감을 전달할 수 있는 기술은 여전히 큰 도전이다. 개발된 촉감 구동기는 지름 6 mm, 두께 1.1 mm로 매우 작고 얇은 구조임에도 불구하고, 압력에서부터 고주파 진동까지 다양한 촉감을 전달할 수 있다. 또한 개발된 구동기는 32 mg 의 매우 가벼운 무게에도 불구하고 25 g의 추를 빠르게 밀어 올릴 수 있을 정도로 높은 출력밀도를 갖고 있다. 연구팀
2025-03-28