< (왼쪽부터) 신소재공학과 조힘찬 교수, 이재환 박사과정, 연성범 박사과정 >
생동감 있는 색상, 높은 효율과 긴 수명을 자랑하는 양자점(Quantum Dot) 기반 디스플레이가 주목받고 있다. 특히, 친환경 인듐 포스파이드(InP) 양자점은 현재 TV와 스마트폰을 비롯한 다양한 디스플레이에 폭넓게 활용되고 있다. 그러나 다가오는 메타버스 시대를 현실감 있게 구현하기 위한 디스플레이 구현을 위해서는 초고해상도 양자점 패턴 제작 기술의 개발이 필수적이다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 신규 양자점 리간드*를 개발하여 InP 양자점의 초고해상도 패턴을 형성하는 동시에 소자 효율을 향상시키는 신기술을 개발했다고 13일 밝혔다.
*리간드: 양자점 표면에 결합하여 양자점을 보호하고 계면활성제 역할을 하는 물질.
InP 양자점은 외부 환경에 민감하여 패턴 형성 공정 중 광학적 특성이 크게 저하되는 한계가 있었다. 또한, 디스플레이 효율에 직결되는 리간드를 조절하는 과정에서도 광학적 특성이 손상되는 문제가 있었다. 따라서, 소재 고유의 특성을 유지하면서 초고해상도 패턴을 구현하고, 소자의 효율까지 높일 수 있는 기술 개발은 큰 도전 과제로 남아 있다.
< 그림 1. (A) 빛에 의한 리간드 절단을 통한 양자점의 특성 변화. (B) 리간드 절단 기반 직접 광학 패터닝 개략도 >
이에, 조힘찬 교수 연구팀은 양자점의 광학적 특성을 보존하는 동시에 초고해상도 패턴 구현을 가능하게 하는 리간드를 개발하였다. 개발된 리간드는 빛에 의해 절단되어 길이가 짧아지는 특성을 보이는 물질로, 양자점 표면이 변화하면서 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다. 더불어 짧아진 리간드는 소자에서의 전기 전도도를 증가시켜 향상된 효율의 디스플레이를 구현할 수 있었다.
< 그림 2. 리간드 절단 기반 직접 광학 패터닝을 통해 제작된 다양한 패턴. RGB 패터닝, 웨이퍼 규모의 대규모 패터닝, 유연기판상 패터닝에 적용 가능함 >
< 그림 3. LED 소자 구조 및 패턴화 된 양자점의 향상된 소자 성능 그래프 >
조힘찬 교수는 “이번에 개발한 광민감성 양자점 소재와 패터닝 기술은 기존 기술과 달리 초고해상도 패턴 제작과 양자점 박막의 전기 전도도 향상을 동시에 달성하여 차세대 양자점 LED 기반 디스플레이, 양자점 이미지 센서 등 다양한 미래 산업 분야에 실질적으로 적용될 수 있을 것으로 기대된다”라고 언급했다.
연구팀의 이재환 박사과정, 연성범 석박사통합과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 에너지 레터스 (ACS Energy Letters)’에 12월 13일 온라인 게재됐으며, 1월 호 부록 표지(Supplementary Cover)로 출판될 예정이다.(논문명: Photocleavable Ligand-Induced Direct Photolithography of InP-Based Quantum Dots).
한편 이번 연구는 한국연구재단 및 중소벤처기업부의 지원을 받아 수행됐다.
라이파이(Li-Fi)는 LED 불빛처럼 눈에 보이는 빛인 가시광선 대역(400~800 THz)을 활용한 무선통신 기술로, 기존 와이파이(Wi-Fi)보다 최대 100배 빠른 속도(최대 224Gbps)를 제공한다. 사용할 수 있는 주파수 할당의 제약이 없고 전파 혼신 문제도 적지만, 누구나 접근이 가능해서 보안에는 상대적으로 취약하다. 한국 연구진이 기존 광통신 소자의 한계를 뛰어넘어 송신 속도와 보안을 동시에 향상시킬 수 있는 라이파이의 새로운 플랫폼을 제시했다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국표준과학연구원(KRISS, 원장 이호성) 임경근 박사와 협력해, 차세대 초고속 데이터 통신으로 주목받는 ‘라이파이(Li-Fi)’ 활용을 위한 ‘온-디바이스 암호화 광통신 소자’ 기술을 개발했다고 24일 밝혔다. 조힘찬 교수팀은 친환경 양자점(독성이 적고 지속 가능한 소재)을 이용
2025-06-24기존 양자점(quantum dots)에는 카이랄 방향성, 광학적 또는 자기적 특성을 복합적으로 구현하는 것이 매우 어려운 기술이었다. KAIST 연구진이 이런 한계를 극복하고, 세계 최초로 광학적 카이랄성과 자성의 융합 특성을 동시에 갖춘 ‘카이럴 자성 양자점’을 개발하고, 이를 활용하여 사람의 뇌처럼 정보를 보고, 판단하고, 저장하며 초기화할 수 있는 기능을 단일 소자에 집약해, 고성능 AI 하드웨어의 새로운 패러다임을 제시했다. 우리 대학 신소재공학과 염지현 교수 연구팀이 빛에 의해 비대칭 반응하는 카이랄성과 자성을 동시에 갖는 특수 나노입자인 양자점(CFQD)을 세계 최초로 개발하고, 저전력 인간 뇌 구조와 작동 방식을 모방한 인공지능 뉴로모픽 소자(ChiropS)까지 성공적으로 구현했다. 신소재공학과 염지현 교수 연구팀이 개발한 카이랄 양자점을 활용한 광 시냅스 트랜지스터는 편광 구분, 멀티 파장 인식, 전기 소거 등 다양한 기능을 단일 소자에 집
2025-04-25최근 양자 큐비트 기술 분야에서는 양자 상태를 확보하기 위해 결정질 반도체를 활용한 아발란체 광다이오드 소자*들이 활용되고 있으나, 높은 열잡음으로 인해 극저온 구동이 필수적이며, 적외선 대역에서 높은 탐지 효율을 갖는 소재의 부재로 기술적 한계에 직면했다. 우리 연구진이 양자점 소재가 차세대 양자 기술로 활용될 돌파구를 제시했다. *아발란체 광다이오드 소자: 매우 미세한 빛을 증폭하여 감지하는 고성능 센서 소자로서 야간 투시경이나 자율주행차, 우주 관측, 양자통신 등에 사용 우리 대학 전기및전자공학부 이정용 교수 연구팀이 콜로이드 양자점을 활용해 하나의 적외선 광자 흡수를 통하여 85배의 전자를 생성할 수 있는 아발란체 전자 증폭 기술*을 개발하여 기존 기술의 한계를 뛰어 넘는 감도를 달성했다고 8일 밝혔다. *아발란체 전자 증폭: 기술 강한 전기장이 인가된 반도체에서 전자가 가속되어 인접 원자와 충돌을 통해 다수의 전자를 생성하는 신호 증폭 기술 화학적으로 합성된
2025-01-083차원 광학 나노구조체는 빛의 진폭, 위상, 편광 상태를 정밀하게 조작할 수 있어 포토닉스 분야에서 큰 관심을 받고 있다. 한국 연구진이 기존 기술로는 구현이 어려웠던 3차원 퀀텀닷 나노구조체를 정교하게 쌓아 올리는 적층 방식으로 구현하는 데 성공했다. 우리 대학 신소재공학과 정연식 교수, 전기및전자공학부 장민석 교수, 동국대학교 최민재 교수 공동 연구팀이 초미세 전사 프린팅 기반으로 3차원 퀀텀닷 구조 제작 기술을 개발했다고 27일 밝혔다. 연구팀이 개발한 이 기술은 대부분의 나노입자에 적용될 수 있어 범용성이 뛰어나고 우수한 패턴 품질을 제공할 수 있다. 또한, 프린팅 방식으로 대면적화가 가능해 고성능 소자 양산에 활용할 수 있는 장점을 가진다. 특히 편광 빛에 대한 선택적 반응을 보이는 구조적 비대칭성을 가진 대면적 카이랄 구조체를 구현해 기존 최고 기록인 19도* 대비 향상된 약 21도의 세계 최고 수준 **원편광 이색성(Circular dichroism) 성능
2024-09-28디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에
2023-09-26