< (왼쪽부터) 생명화학공학과 권문수 박사과정, 이준규 박사과정, 김현욱 교수 >
유전자, 단백질, 대사물질 등 복잡한 정보를 표현하는 바이오 경로 이미지는 중요한 연구 결과를 내포하고 있지만, 이미지 기반 정보 추출에 대해 그동안 충분한 연구가 이뤄지지 않았다. 이에 우리 연구진은 바이오 경로 정보를 자동으로 추출할 수 있는 인공지능 프레임워크를 개발했다.
우리 대학 생명화학공학과 김현욱 교수 연구팀이 바이오 경로 이미지에서 유전자와 대사물질 정보를 자동으로 추출하는 기계학습 기반의 ‘바이오 경로 정보 추출 프레임워크(이하 EBPI, Extraction of Biological Pathway Information)’를 개발했다고 28일 밝혔다.
연구팀이 개발한 EBPI는 문헌에서 추출한 이미지 속의 화살표와 텍스트를 인식하고, 이를 기반으로 바이오 경로를 편집 가능한 표의 형태로 재구성한다. 객체 감지 모델 등의 기계학습을 사용해 경로 이미지 내 화살표의 위치와 방향을 감지하고, 이미지 속 텍스트를 유전자, 단백질, 대사물질로 분류한다. 그 후 추출된 정보를 통합해 경로 정보를 표 형식으로 제공한다.
연구팀은 74,853편의 논문에서 추출한 바이오 경로 이미지와 기존 수작업으로 작성된 경로 지도를 비교하며 EBPI의 성능을 검증했다. 그 결과, 높은 정확도로 바이오 경로 정보가 자동으로 추출됐음을 확인했다.
EBPI를 사용해 대표적인 바이오 경로 데이터베이스에 포함되지 않은 생화학 반응 정보를 대량의 문헌 내 바이오 경로 이미지로부터 추출하는 데에도 성공했다.
다양한 산업적 가치를 지닌 대사물질들의 생합성 관련 문헌을 EBPI로 분석한 결과, 문헌에서는 보고가 됐지만, 기존 데이터베이스에서는 누락된 생화학 반응들이 확인된 것이다. 화학산업에서 다양한 응용분야를 갖는 1,4-부탄디올, 2-메틸부티르산, 하이드록시티로솔, 레불린산 및 발레로락탐의 생합성 경로를 예시로 이러한 발견을 제시했다.
< 그림 1. 바이오 경로 이미지에서 생화학 반응 정보를 자동으로 추출하는 EBPI의 모식도 >
연구를 총괄한 김현욱 교수는 “이번 연구에서 개발된 EBPI는 대규모 문헌 데이터 분석에 있어 중요한 도구가 될 것이며 생명공학, 대사공학 및 합성생물학 분야에서 바이오 경로 이미지를 AI로 분석하는 최초의 사례로, 관련 연구의 실험 디자인 및 분석 시 유용하게 활용될 수 있을 것”이라고 밝혔다.
< 그림 2. 감마 하이드록시뷰티르산 대사경로 이미지에 EBPI를 적용하여, 해당 생화학 반응 정보를 추출한 예시 >
생명화학공학과 권문수 박사과정생과 이준규 박사과정생이 공동 제1 저자인 이번 연구는 대사공학 및 합성생물학 분야의 대표적 국제학술지인 대사공학(Metabolic Engineering, JCR 분야 상위 10% 이내)에 11월호에 게재됐다.
※ 논문명 : A machine learning framework for extracting information from biological pathway images in the literature
※ 저자 정보 : 권문수(한국과학기술원, 공동 제1 저자), 이준규(한국과학기술원, 공동 제1 저자), 김현욱(한국과학기술원, 교신저자) 포함 총 3명
한편 이번 연구는 과학기술정보통신부 한국연구재단 및 농촌진흥청의 농업미생물사업단의 지원을 받아 수행됐다.
우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30새 정부 출범과 함께 AI 및 과학기술 분야에 대한 사회적 관심이 크게 높아진 가운데, 우리 대학은 과학기술을 기반으로 국가 혁신을 주도하고 인류의 문제 해결에 앞장서는‘AI 중심 가치 창출형 과학기술특성화대학’으로 거듭날 계획임을 24일 밝혔다. 대한민국이 기술 주도형 사회로 대전환을 맞이하는 시점에서 KAIST는 지난 반세기 동안 국가 발전사의 '스타터킷(Starter Kit)' 역할을 수행해온 경험을 토대로, 단순한 교육·연구기관을 넘어 새로운 사회적 가치를 창출하는 글로벌 혁신 허브로의 도약을 준비하고 있다. 특히 우리 대학은 대한민국이 인공지능 주요 3개국(G3)에 도약할 수 있도록 전 국민이 소외 없이 AI를 활용할 수 있는 'AI 기본사회' 실현을 비전으로 제시했다. 이를 위해 KAIST가 주관하는 대한민국을 대표하는 ‘국가AI연구거점’사업(책임자 김기응)을 통해 AI 기술을 기반으로 산업 경쟁력을 제고하고 사회
2025-06-24임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일
2025-06-16“처음에는 인공지능 조교(VTA)에 대한 기대가 크지 않았지만, 밤늦게 갑자기 궁금해진 개념을 질문했을 때도 즉각적으로 답을 받을 수 있어서 매우 유용했다”며 “특히 인간 조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다”(수강생 양지원 박사과정 학생) 우리 대학 김재철AI대학원 최윤재 교수와 산업디자인학과 홍화정 교수 공동 연구팀이 대형 강의에서도 학생 개개인에게 맞춤형 피드백을 제공할 수 있는 ‘인공지능 조교(Virtual Teaching Assistant, 이하 VTA)’를 개발해 실제 강의에 성공적으로 적용했다고 5일 밝혔다. 이번 연구는 2024년 가을학기 석·박사과정 학생 477명이 수강한 김재철AI대학원의 ‘인공지능을 위한 프로그래밍’ 교과목에 VTA를 도입해, 그 효과와 실용 가능성을 실제 교육
2025-06-05