< (왼쪽부터) 임동주, 정재권 공동 제1저자, 고려대 이헌정 교수, 우리 대학 수리과학과 김재경 교수 >
일기예보처럼 내일의 기분을 간단히 예측할 수 있게 됐다. 우리 대학 수리과학과 김재경 교수(기초과학연구원 수리 및 계산 과학 연구단 의생명 수학 그룹 CI) 연구팀은 이헌정 고려대 의대 교수팀과 공동으로 오늘의 수면 패턴을 기반으로 내일의 기분 삽화를 높은 정확도로 예측하는 기술을 개발했다.
기분 장애는 수면과 밀접한 관련이 있다. 가령, 장거리 비행으로 인한 시차, 계절에 따른 일출 시간 변화는 기분 장애 환자들의 기분 삽화 재발을 유도하는 대표적 요인이다. 그간 수면 데이터를 기반으로 기분 삽화를 예측하려는 시도가 다수 이뤄졌다. 하지만 기존 방법은 수면 패턴뿐만 아니라 걸음 수, 심박수, 전화사용 여부, GPS를 활용한 이동성 등 다양한 종류의 데이터가 필요해 수집 비용이 높고, 일상적 활용이 어렵다는 한계가 있었다.
연구진은 수면-각성 패턴 데이터만으로 기분 삽화를 예측할 수 있는 새로운 모델을 개발해 기존 한계를 극복했다. 수면-각성 패턴 데이터는 잠을 잔 시간과 깨어있는 시간(각성 시간)이 기록된 데이터를 말한다.
우선, 연구진은 168명의 기분 장애 환자가 웨어러블 기기를 통해 기록한 평균 429일간의 수면-각성 데이터를 수집했다. 참여 환자들은 우울증 및 조울증 환자로 대부분 약물치료도 병행하고 있는 상태였다. 이렇게 수집한 빅데이터에서 연구진은 36개의 수면-각성 패턴과 생체리듬에 관련된 지표들을 추출했고, 이 지표를 기계학습 알고리즘에 적용했다. 알고리즘은 당일의 수면 패턴을 토대로 다음 날의 우울증, 조증, 경조증 정도를 각각 80%, 98%, 95%의 높은 정확도로 예측할 수 있었다.
< 그림 1. 수면-각성 데이터만을 이용한 기분 삽화 예측 모델 개발 연구진은 기존의 기분 삽화 예측 모델의 한계를 극복한 새로운 예측 모델을 개발했다. 기존의 모델들은 다양한 데이터를 필요로 한 반면, 새로운 모델은 수면-각성 웨어러블 데이터만으로 작동한다. >
이 과정에서 연구진은 생체리듬의 일일 변화가 기분 삽화 예측의 핵심 지표임을 발견했다. 생체리듬이 늦춰질수록 우울 삽화의 위험이 증가하고, 반대로 과도하게 앞당겨지면 조증 삽화의 위험이 증가했다. 예를 들어, 저녁 11시에 취침하고 오전 7시에 기상하는 생체리듬을 가진 사람이 늦게 자고, 늦게 일어나게 되면 우울 삽화의 위험이 증가하는 식이다.
< 그림 2. 기분 장애 환자의 기분 삽화를 수면 정보로 예측한 결과 기분 장애 환자의 기분 삽화를 수면-각성 웨어러블 데이터를 활용해 예측한 결과. 기분 장애 환자의 울증 (왼쪽), 조증 (중간), 경조증(오른쪽)을 각각 80%, 98%, 95%로 예측했다. >
연구진이 제시한 방법론은 기분 장애 환자의 치료 효율성을 높일 것으로 기대된다. 실제 임상 현장에서는 계절성 우울증 환자의 치료를 위해 이른 아침에 광선치료를 진행한다. 효과적 기분 장애 치료를 위해서는 환자의 주관적 회상에 의존한 심리 상태 평가를 넘어 객관적 기분 삽화 데이터가 필요하다. 이번 연구는 객관적 기분 삽화 지표를 얻을 수 있는 방법론을 제시한 것으로 특히, 웨어러블 기기를 통해 일상생활 중 비침습적이고 수동적으로 기분 삽화 데이터를 확보한다는 것이 장점이다.
공동 교신저자인 이헌정 교수는 “이번 연구는 기분 장애 예측의 새로운 패러다임을 제시했다는 의미가 있다”며 “향후 기분 장애 환자들이 스마트폰 애플리케이션(앱)을 통해 맞춤형 수면 패턴을 추천받아, 기분 삽화를 예방하는 디지털 치료가 가능해질 것”이라고 말했다.
< 그림 3. 생체리듬과 기분 삽화의 연관성 (왼쪽) 생체리듬이 지연될수록(빨간색 점) 울증의 확률이 높아진다. (오른쪽)생체리듬이 앞당겨질수록(파란색 점) 조증의 확률이 높아진다. >
연구를 이끈 김재경 CI는 “수면-각성 패턴 데이터만으로 기분 삽화를 예측할 수 있는 모델을 개발하여 데이터 수집 비용을 절감하고, 임상 적용 가능성을 크게 높였다”며 “기분 장애 환자들에게 비용 효율적인 진단 및 치료법 개발 가능성을 제시했다는 의미가 있다”고 말했다.
이번 연구 결과는 11월 18일 ‘네이처’의 디지털 헬스케어 분야 자매지인‘NPJ Digital Medicine’온라인 판에 게재됐다.
※ 논문명: Accurately Predicting Mood Episodes in Mood Disorder Patients Using Wearable Sleep and Circadian Rhythm Features (제1저자: 임동주, 정재권)
정신질환 팬데믹이 발생했다. 전 세계적으로 약 10억 명이 크고 작은 정신질환을 앓고 있다. 한국도 더욱 심각하여 현재 우울증 및 불안장애 환자는 약 180만 명이며 총 정신질환자는 5년 새 37% 증가하여 약 465만 명이다. 한미 공동 연구진이 웨어러블 기기를 통해 수집되는 생체 데이터를 활용해 내일의 기분을 예측하고, 나아가 우울증 증상의 발현 가능성을 예측하는 기술을 개발했다. 우리 대학 뇌인지과학과 김대욱 교수 연구팀이 미국 미시간 대학교 수학과 대니엘 포저(Daniel B. Forger) 교수팀과 공동연구로 스마트워치로부터 수집되는 활동량, 심박수 데이터로부터 교대 근무자의 수면 장애, 우울감, 식욕부진, 과식, 집중력 저하와 같은 우울증 관련 증상을 예측하는 기술을 개발했다고 15일 밝혔다. WHO에 따르면 정신질환의 새로운 유망한 치료 방향은 충동성, 감정 반응, 의사 결정 및 전반적인 기분에 직접적인 영향을 주는 뇌 시상하부에 위치한 생체시계(circad
2025-01-15국제 공동 연구진이 운동 에너지를 전기 에너지로 효율적으로 변환하여 웨어러블 기기의 자가 충전이 가능하게 하는 새로운 방법을 개발했다. 이제 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있게 되었다. 우리 대학 신소재공학과 서동화 교수 연구팀이 싱가포르 난양공대(NTU, Nanyang Technological Univ.) 전자공학과 이석우 교수 연구팀과의 국제공동연구를 통해 새로운 전기화학적 에너지 수확 방법을 개발했으며, 이를 통해 기존 기술 대비 10배 높은 출력과 100초 이상 지속되는 전류 생성에 성공했다고 10일 밝혔다. 운동 에너지를 전기 에너지로 변환시키는 보통 압전(Piezo-electric)과 마찰전기(Tribo-electric) 방식으로 순간적으로 높은 전력을 발생시킬 수 있지만, 내부 저항이 높기 때문에 전류가 짧게 흐르는 한계가 있다. 이에 따라, 보다 효율적이고 지속 가능한 에너지 하베스팅(수확) 기술이 요구되고 있다.
2024-12-10우리 대학이 4월 과학의 달을 맞아 첨단 연구성과를 체험형 전시 프로그램으로 구성해 시민과 소통에 나선다. 25일부터 28일까지 4일간 대전 엑스포 시민광장 및 과학공원 일대에서 열리는 '2024 대한민국 과학축제 & 과학기술대전'에 6개 연구팀 및 3개 창업기업이 참여해 기술을 선보인다. '과학 실험실' 구역에서는 수면·퍼스널 컬러·뇌구조 분야의 연구진이 체험형 전시로 관람객을 맞는다. 석현정 산업디자인학과 교수 연구팀은 인공지능 기반 퍼스널컬러 진단 서비스를 제공하는 '나의 퍼스널 컬러 찾기(The Authentic Color Play)' 부스를 설치한다. 방문객들은 현장에서 피부색 자동 측정 기술을 직접 체험해보고 개인 피부에 최적화된 색상을 추천받을 수 있다. 김재경 수리과학과 교수 연구팀은 방문객이 양질의 수면을 하고 있는지 3분 만에 알아볼 수 있는 '슬립스(SLEEPS)' 프로그램을 운영한다. 머신러닝 기반의 수면장애 예측 알고리즘을
2024-04-25우리 대학이 24일 오후 대전 본원에서 ㈜이브자리(대표이사 윤종웅, 고춘홍)와 수면 연구 및 수면 기술 개발을 위한 MOU를 체결했다. 수면은 뇌에서 독성물질을 배출하고 몸의 항상성을 회복하는 데 중요한 역할을 한다. 불면증 및 수면무호흡증 등의 수면장애는 치매 등 뇌 질환을 일으키는 원인으로 지목되고 있으며, 과학기술로 숙면을 돕는 슬립테크(SleepTech) 수요도 날로 높아지고 있다. 2021년 북미의 슬립테크 시장 규모는 9조 원에 육박하는 것으로 평가되었으며, 연평균 17.6%가량 급성장해 2030년에는 약 23조 원에 이를 것으로 전망되고 있다. 구글 등 첨단 IT 회사들이 수면 및 건강용품 시장에 뛰어들고 있는 이유다. 우리대학과 ㈜이브자리는 이번 협약을 바탕으로 ▴수면 공동연구 지원 및 협력 ▴뇌인지 기반 수면장애 치료기술 공동개발 ▴상호인적자원 교류 및 교육 ▴수면 및 건강 관련 협력 및 제품개발 등 국민건강 증진을 위한 노력 등의 분야에서 협력한다.
2024-01-24각종 장비를 몸에 부착한 채 병원에서 하룻밤을 보내야 하는 번거로운 검사 없이 웹사이트를 통해 간단히 수면 질환 위험도를 파악할 방법이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀이 삼성서울병원 주은연‧최수정 교수팀, 이화여대 서울병원 김지현 교수팀과 공동 연구를 통해 개발한 세 가지 수면 질환을 예측할 수 있는 알고리즘 ‘슬립스(SLEEPS‧SimpLe quEstionnairE Predicting Sleep disorders)’를 12일 공개했다. ‘잠이 보약’이라는 말처럼 수면은 정신적‧신체적 건강에 주요한 영향을 미친다. 성인의 60%가량이 수면 질환을 앓고 있지만, 관련하여 전문 의료진에게 문의한 비율은 6% 수준에 불과하다. 병원 방문을 꺼리는 원인 중 하나로는 수면 질환 진단을 받기 위해 시행하는 수면다원검사가 번거롭다는 이유가 있다. 공동연구진은 약 5,000명의 수면다원검사 결과를 기계 학습을 통해 학습시켜 수
2023-12-14