< 전산학부 이의진 교수 연구팀 >
최근 빠른 고령화 및 출산율 감소 등으로 1인 가구가 급속하게 증가하면서, 1인 가구의 정신건강 문제에 대한 관심도 함께 높아지고 있다. 서울시가 실시한 1인 가구 실태조사에 따르면, 1인 가구의 60% 이상이 외로움을 느끼고 있으며, 특히 사회적 고립과 함께 외로움을 겪는 비율이 상당히 높은 것으로 나타났다.
우리 대학 전산학부 이의진 교수 연구팀이 1인 가구의 정신건강 관리를 위해, 사용자 스스로가 자신의 심리 상태를 기록할 수 있도록 지원하는 상황 인식 기반 멀티모달 스마트 스피커 시스템을 개발했다고 24일 밝혔다.
연구팀은 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문하도록 이 시스템을 설계했고 기존의 무작위 설문보다 높은 응답률을 달성하는 것을 확인했다.
기존 스마트 스피커를 활용한 정신건강 자가 추적 연구에서 무작위 설문을 할 경우 사용자의 스트레스, 짜증 등 부정적인 감정이 유발시켜 설문 응답에 편향이 발생할 수 있어 각별한 주의가 필요했다.
이러한 문제 해결을 위해 이의진 교수 연구팀은 스마트 스피커에 멀티 모달 센서를 장착해, 사용자의 주변 상황의 변화를 감지해 스피커가 말 걸기 좋은 시점이 검출되면 정신건강 자가 추적 설문을 능동적으로 요청하는 상황 인식 기반 자가 추적 기술을 개발했다.
스피커는 실내 움직임, 조명, 소음, 이산화탄소 등 다양한 센서 데이터를 종합적으로 분석해 사용자의 존재 및 활동을 감지한 뒤, 사용자가 응답하기 적합한 시점에 자가 추적 설문을 능동적으로 요청함으로써, 설문 응답의 효율성을 극대화했다.
또한, 설문 입력 방식의 경우 최근 출시된 스마트 스피커는 명령뿐만 아니라 터치스크린도 지원하므로 사용자들이 음성 또는 터치 입력 방식을 자유롭게 선택할 수 있도록 해 상호작용의 폭을 넓혔다. 이를 통해 사용자는 상황에 맞는 최적의 인터페이스를 선택해 자가 추적을 쉽게 수행할 수 있도록 했다.
< 그림 1. 선제적으로 사용자의 정신건강 관리를 돕는 스마트 스피커. 사용자에게 먼저 말을 걸어 정신건강 자가 추적을 돕는 스마트 스피커가 작동하는 방식이다. 사용자의 주변 상황을 파악하여 사용자가 대화가 가능하다고 예측되는 시점에“지금 당신의 마음 건강은 어떤가요?”와 같이 대화의 시작을 알리는 문장으로 말을 건다. >
개발된 스피커의 사용자 경험을 평가하기 위해서 연구팀은 1인 가구 20세대에 자가 추적 스마트 스피커를 설치해, 한 달 동안 실증 연구를 수행해서 총 2,201개의 정신건강 설문 응답 데이터셋을 구축했다.
데이터셋 분석을 통해 설문 응답 시간, 활동 맥락에 따른 설문 응답 패턴 및 어떤 상황에서 음성 입력(VUI) 또는 터치 입력(GUI)이 더 선호되는지 파악했다.
< 그림 2. 상황 인식 기반 멀티모달 스마트 스피커 시스템 개요도 >
특히, 스마트 스피커가 말로 사용자에게 요청을 하다 보니 스피커 근처에서 사용자의 활동을 감지하는 것이 정신건강 설문 응답률에 큰 영향을 미쳤다. 음성 입력의 편의성에도 불구하고 전반적으로 참가자들은 음성 입력보다는 빠른 응답이 가능한 터치 입력을 선호했다.
데이터 분석 결과, 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문을 할 경우 응답률이 더 높으며, 어떤 상황에서 음성 또는 터치 인터페이스를 선호하는지도 파악했다.
< 그림 3. 상황 인식 기반 멀티모달 스마트 스피커 시스템 프로토타입 >
연구를 주도한 이의진 교수는 “이번에 개발한 스마트 스피커를 앞으로 수용전념치료 기법을 활용한 인간상담사와 같은 기능의 정신건강 관리 지원 스마트 스피커로 발전시키고자 한다. 나아가 실내에서 수집된 일상생활 데이터를 AI 모델로 학습해 사용자 정신건강 상태에 따라 라이프 스타일 패턴을 예측하는 시스템도 개발하여 향후 정신질환 조기 발견과 효율적인 관리를 가능케 할 인공지능 에이전트의 혁신을 이끌 것으로 기대된다” 라고 말했다.
< 그림 4. 상황 인식 ESM 스케줄링 알고리즘 >
한편 이 연구는 LG전자-KAIST 디지털 헬스케어 연구센터의 지원을 받아 수행됐고 인간 컴퓨터 상호작용(HCI) 분야 국제 최우수 국제학술대회인 미국컴퓨터협회(ACM) 소속 ‘Conference on Human Factors in Computing Systems (CHI)’에서 지난 2024년 5월에 발표됐다.
논문명: Exploring Context-Aware Mental Health Self-Tracking Using Multimodal Smart Speakers in Home Environments
< 그림 5. 정신건강 자가 추적을 위한 멀티모달 스마트 스피커 대화 시나리오 >
자동차와 기계 부품 등에 사용되는 강철 합금은 일반적으로 고온에서 녹이는(융해) 공정을 거쳐 제조된다. 이때 성분이 변하지 않고 그대로 녹는 현상을 ‘합치 융해(congruent melting)’라고 한다. 우리 연구진은 이처럼 고온 실험을 통해서만 가능했던 합금의 융해 특성을 인공지능(AI)으로 해결했다. 이번 연구는 고질적인 난제였던 합금이 녹을 때 서로 얼마나 잘 섞이는지를 미리 예측함으로써, 미래 합금 개발의 방향성을 제시한다는 점에서 주목받고 있다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 노스웨스턴대 크리스 울버튼(Chris Wolverton) 교수팀과 국제 공동연구를 통해, 밀도범함수이론(DFT)* 기반의 형성에너지(합금이 얼마나 안정적인지를 나타내는 값) 데이터를 활용해 합금이 녹을 때 성분이 유지되는지를 예측하는 고정확도 머신러닝 모델을 개발했다고 14일 밝혔다. *밀도범함수이론(Density Functional Theory,
2025-07-14‘음향 분리 및 분류 기술’은 드론, 공장 배관, 국경 감시 시스템 등에서 이상 음향을 조기에 탐지하거나, AR/VR 콘텐츠 제작 시 공간 음향(Spatial Audio)을 음원별로 분리해 편집할 수 있도록 하는 차세대 인공지능(AI) 핵심 기술이다. 우리 대학 전기및전자공학부 최정우 교수 연구팀이 세계 최고 권위의 음향 탐지 및 분석 대회인 ‘IEEE DCASE 챌린지 2025’에서 ‘공간 의미 기반 음향 장면 분할(Spatial Semantic Segmentation of Sound Scenes)’ 분야에서 우승을 차지했다고 11일 밝혔다. 이번 대회에서 연구팀은 전 세계 86개 참가팀과 총 6개 분야에서 경쟁 끝에 최초 참가임에도 세계 1위 성과를 거두었다. KAIST 최정우 교수 연구팀은 이동헌 박사, 권영후 석박통합과정생, 김도환 석사과정생으로 구성되었다. 연구팀이 참가한 ‘공간 의미 기
2025-07-11원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다. 최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적
2025-07-02우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30