< 기계공학과 윤국진 교수 >
우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제학술대회 중 하나인 ECCV 2024 (European Conference on Computer Vision)에 채택되어, 컴퓨터 비전 분야 세계 최고의 연구 역량을 다시 한번 인정받았다. CVPR, ICCV와 함께 컴퓨터 비전 분야 뿐 아니라 전체 인공지능 분야에서도 세계 최고 권위 학술대회로 꼽히는 ECCV는 1990년부터 격년으로 개최되는 학술대회로, Google Scholar 기준 H5-색인 206을 기록하고 있으며, 공학 및 컴퓨터과학 (Engineering & Computer Science)전분야에서 최고 수준의 국제 학술대회 중 하나이다. 이번 ECCV 2024에는 총 8,585개의 논문들이 제출되었고 그 중 2,395개의 논문이 채택되어 약 27.9%의 낮은 채택률을 기록하였다. 단일 연구실에서 12편의 논문이 채택된 것은 극히 이례적인 경우다.
윤국진 교수 연구팀의 논문 12편은 학습 기반의 시각 지능 구현을 연구 논문들로, 가상 시점 합성, 약지도 의미론적 분할, 비디오 품질 개선, 3차원 의미론적 분할, 3차원 객체 인식, 점구름 완성, 이벤트 카메라 기반 낮과 밤 상태 전이, 이벤트 카메라 기반 스테레오 정합, 적대적 공격과 같은 컴퓨터비전 분야의 핵심 주제들에 대한 논문들이다. 특히, 양훈민 박사과정과 정종오 박사과정의 논문 “Prompt-Driven Contrastive Learning for Transferable Adversarial Attacks”은 전체 논문 중 상위 2.3%에 해당하는 구두 발표 논문으로 선정됐다.
앞서 윤국진 교수 연구팀은 올해 6월 개최된 CVPR 2024에도 9편의 논문을 발표한 바 있는데, 이번 ECCV 2024에도 12편의 논문을 발표하게 되어, 컴퓨터 비전 분야에서 세계 최고의 연구 역량을 가진 연구실로 인정받고 있다. 연구팀은 지속적으로 컴퓨터 비전 분야에서 좋은 연구 성과를 달성하고 있기에 앞으로도 도전적인 연구를 계속해 나가며 연구를 진행하겠다는 포부를 밝혔다. ECCV 2024는 2024년 9월 29일부터 10월 4일까지 이탈리아 밀라노의 Mico Milano에서 개최될 예정이다.
최근 생성형 인공지능은 텍스트, 이미지, 비디오 생성 등 다양한 분야에서 널리 사용되고 있지만, 소재 개발 분야에서는 아직 충분히 활용되지 못하고 있다. 이러한 상황에서 KAIST 연구진이 구조적 복잡성을 지닌 다공성 소재를 생성하는 인공지능 모델을 개발하여, 사용자가 원하는 특성의 소재를 선택적으로 생성할 수 있게 되었다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 원하는 물성을 가진 금속 유기 골격체(Metal-Organic Frameworks, MOF)를 생성하는 인공지능 모델을 개발했다고 23일 밝혔다. 김지한 교수 연구팀이 개발한 생성형 인공지능 모델인 모퓨전(MOFFUSION)은 금속 유기 골격체의 구조를 보다 효율적으로 표현하기 위해, 이들의 공극 구조를 3차원 모델링 기법을 활용해 나타내는 혁신적인 접근 방식을 채택했다. 이 기법을 통해 기존 모델들에서 보고된 낮은 구조 생성 효율을 81.7%로 크게 향상시켰다. 또한, 모퓨전은 생성 과정에서 사용자
2025-01-23기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다. 우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다. 연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수
2025-01-22KAIST 설명가능 인공지능연구센터(센터장 최재식 교수)는 별도의 복잡한 설정이나 전문 지식 없이도 손쉽게 AI모델에 대한 설명성을 제공할 수 있는 플러그앤플레이(Plug-and-Play) 방식의 설명가능 인공지능 프레임워크를 개발해, 이를 27일 오픈소스로 공개했다. 설명가능 인공지능(Explainable AI, 이하 XAI)이란 AI 시스템의 결과에 영향을 미치는 주요 요소를 사람이 이해할 수 있는 형태로 설명해주는 제반 기술을 말한다. 최근 딥러닝 모델과 같이 내부 의사 결정 프로세스가 불투명한 블랙박스 AI 모델에 대한 의존도가 커지면서 설명가능 인공지능 분야에 대한 관심과 연구가 증가했다. 그러나 지금까지는 연구자와 기업 실무자들이 설명가능 인공지능 기술을 활용하는 것이 몇 가지 이유로 쉽지 않았다. 우선, 딥러닝 모델의 유형별로 적용 가능한 설명 알고리즘들이 서로 달라서 해당 모델에 적용할 수 있는 설명 알고리즘이 무엇인지 알기 위해서는 XAI에 대해 어느 정도 사
2024-12-27“케이던스 사의 통 큰 기부에 감사드리며, 대한민국 AI 인재 100만 명 양성이라는 원대한 목표 달성과 세상을 혁신할 반도체 연구 실현에 앞장서겠습니다”(이광형 총장) 우리 대학은 미국 소프트웨어 기업인 케이던스 디자인 시스템즈 코리아(Cadence Design Systems, 이하 케이던스)가 반도체 설계 특화 장비인 ‘케이던스 팔라디움 제트원(Cadence Palladium Z1)’*을 우리 대학에 기증한다고 밝혔다. *팔라디움 제트원: 반도체 설계 검증을 위한 초고성능 에뮬레이터 장비로, 하드웨어-소프트웨어 검증 및 디버깅 작업을 1개의 랙 당 5.76억 게이트까지 대용량으로 구현 가능함. 동 장비를 통해 SoC(System On Chip) 개발 단계에서 설계 검증을 더 원활히 수행할 수 있음. 케이던스는 1995년 반도체설계교육센터(IDEC) 설립 이후 우리 대학에 EDA(Electronic Design Automati
2024-12-17국내 최대의 설명가능 인공지능(XAI) 연구조직인 KAIST 설명가능 인공지능연구센터(센터장 KAIST 최재식 교수)는 11월 5일부터 22일까지 7회에 걸쳐 설명가능 인공지능 튜토리얼 시리즈를 성공적으로 개최했다. 이번 튜토리얼에는 학생, 연구자, 기업 실무자 등 누적인원 총 530여 명이 참여하여 설명가능 인공지능 기술에 대한 높은 관심과 수요를 보여주었다. 행사는 XAI의 주요 알고리즘부터 최신 연구 주제까지, 총 16개 세션 발표로 진행되었다. 개회 강연으로 ‘설명가능 인공지능 최신 연구 동향’에 대해 최재식 교수가 발표하였고, 이어서 KAIST 설명가능 인공지능연구센터 소속 석·박사 과정 연구원들이 △주요 XAI 알고리즘 △XAI 알고리즘의 평가기법 △거대 언어모델(LLM), 이미지 생성모델, 시계열 데이터에 대한 설명성 △ XAI Framework, 의료 도메인 적용 사례를 주제로 발표했다. 튜토리얼 마지막날에는 독일 Fraunho
2024-11-29