본문 바로가기 대메뉴 바로가기

연구

기업 의사결정을 거대언어모델로 최초 해결​
조회수 : 2143 등록일 : 2024-06-19 작성자 : 홍보실

(왼쪽부터) 전산학부 김민수 교수, 이명화 박사과정, 안선호 석사과정

< (왼쪽부터) 전산학부 김민수 교수, 이명화 박사과정, 안선호 석사과정 >

기업 내외의 상황에 따라 끊임없이 새롭게 결정해야 하는 기업 의사결정 문제는 지난 수십 년간 기업들이 전문적인 데이터 분석팀과 고가의 상용 데이터베이스 솔루션들을 통해 해결해 왔는데, 우리 연구진이 최초로 거대언어모델을 이용하여 풀어내어 화제다. 

우리 대학 전산학부 김민수 교수 연구팀이 의사결정 문제, 기업 데이터베이스, 비즈니스 규칙 집합 세 가지가 주어졌을 때 거대언어모델을 이용해 의사결정에 필요한 정보를 데이터베이스로부터 찾고, 비즈니스 규칙에 부합하는 최적의 의사결정을 도출할 수 있는 기술(일명 계획 RAG, PlanRAG)을 개발했다고 19일 밝혔다. 

거대언어모델은 매우 방대한 데이터를 학습했기 때문에 학습에 사용된 바 없는 데이터를 바탕으로 답변할 때나 오래전 데이터를 바탕으로 답변하는 등 문제점들이 지적되었다. 이런 문제들을 해결하기 위해 거대언어모델이 학습된 내용만으로 답변하는 것 대신, 데이터베이스를 검색해 답변을 생성하는 검색 증강 생성(Retrieval-Augmented Generation; 이하 RAG) 기술이 최근 각광받고 있다. 

그러나, 사용자의 질문이 복잡할 경우 다양한 검색 결과를 바탕으로 추가 정보를 다시 검색하여 적절한 답변을 생성할 때까지 반복하는 반복적 RAG(IterativeRAG)라는 기술이 개발됐으며, 이는 현재까지 개발된 가장 최신의 기술이다. 

연구팀은 기업 의사결정 문제가 GPT-3.5 터보에서 반복적 RAG 기술을 사용하더라도 정답률이 10% 미만에 이르는 고난도 문제임을 보이고, 이를 해결하기 위해 반복적 RAG 기술을 한층 더 발전시킨 계획 RAG(PlanRAG)라는 기술을 개발했다.

그림 1. Europa Universalis IV에 기반하여 제작된 의사결정 질의응답 벤치마크의 문제 상황과, PlanRAG 기반 LLM이 세 단계의 의사결정 과정에 따라 문제를 해결하는 예시(영문에서 번역된 내용). 이 문제는 국가간의 무역 경쟁이 있는 대항해시대를 배경으로 하며, LLM은 국가의 이익을 최대로 하기 위한 무역 거점(붉은 점으로 표시됨)을 결정하여야 한다. 예시에서는 LLM이 BAH 라는 국가의 이익을 최대로 하기 위해서 국제 무역에 관한 데이터베이스와 규칙을 확인하고, Doab 무역 거점에 상인을 배치하는 의사결정을 한다. 종래의 RAG 기술들은 단계 1을 수행하지 않는다.

< 그림 1. Europa Universalis IV에 기반하여 제작된 의사결정 질의응답 벤치마크의 문제 상황과, PlanRAG 기반 LLM이 세 단계의 의사결정 과정에 따라 문제를 해결하는 예시(영문에서 번역된 내용). 이 문제는 국가간의 무역 경쟁이 있는 대항해시대를 배경으로 하며, LLM은 국가의 이익을 최대로 하기 위한 무역 거점(붉은 점으로 표시됨)을 결정하여야 한다. 예시에서는 LLM이 BAH 라는 국가의 이익을 최대로 하기 위해서 국제 무역에 관한 데이터베이스와 규칙을 확인하고, Doab 무역 거점에 상인을 배치하는 의사결정을 한다. 종래의 RAG 기술들은 단계 1을 수행하지 않는다. >

계획 RAG(PlanRAG)는 기존의 RAG 기술들과 다르게 주어진 의사결정 문제, 데이터베이스, 비즈니스 규칙을 바탕으로 어떤 데이터 분석이 필요한지에 대한 거시적 차원의 계획(plan)을 먼저 생성한 후, 그 계획에 따라 반복적 RAG를 이용해 미시적 차원의 분석을 수행한다.

이는 마치 기업의 의사결정권자가 어떤 데이터 분석이 필요한지 계획을 세우면, 그 계획에 따라 데이터 분석팀이 데이터베이스 솔루션들을 이용해 분석하는 형태와 유사하며, 다만 이러한 과정을 모두 사람이 아닌 거대언어모델이 수행하는 것이 커다란 차이점이다. 계획 RAG 기술은 계획에 따른 데이터 분석 결과로 적절한 답변을 도출하지 못하면, 다시 계획을 수립하고 데이터 분석을 수행하는 과정을 반복한다. 

김민수 교수는 지금까지 거대언어모델 기반으로 의사결정 문제를 푼 연구가 없었던 관계로, 기업 의사결정 성능을 평가할 수 있는 의사결정 질의응답(DQA) 벤치마크를 새롭게 만들었다. 그리고 해당 벤치마크에서 GPT-4.0을 사용할 때 종래의 반복적 RAG에 비해 계획 RAG가 의사결정 정답률을 최대 32.5% 개선함을 보였다. 이를 통해 기업들이 복잡한 비즈니스 상황에서 최적의 의사결정을 사람이 아닌 거대언어모델을 이용하여 내리는데 적용되기를 기대한다고 말했다. 

이번 연구에는 김 교수의 제자인 이명화 박사과정과 안선호 석사과정이 공동 제1 저자로, 김 교수가 교신 저자로 참여했으며, 연구 결과는 자연어처리 분야 최고 학회(top conference)‘NAACL’ 에 지난 617일 발표됐다. (논문 제목: PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers)

한편, 이번 연구는 과기정통부 IITP SW스타랩 및 ITRC 사업, 한국연구재단 선도연구센터인 암흑데이터 극한 활용 연구센터의 지원을 받아 수행됐다.

관련뉴스