이달의 과학기술자상 2월 수상자, KAIST 물리학과 이용희 교수 선정
= 전류구동 단세포 광결정 레이저 개발 =
과학기술부(부총리 吳明)와 한국과학재단(KOSEF, 이사장 權五甲)은 최첨단 극미세 반도체 레이저 분야에서 ‘광결정 단세포 레이저 공진기’의 세계적 권위자로 인정받고 있는 KAIST 자연과학부 물리학과의 이용희 교수를 ‘이달의 과학기술자상’ 2005년 2월 수상자로 선정했다.
KAIST 물리학과 이용희 교수가 이끄는 과기부지원 나노레이저 국가지정연구실은 세상에서 가장 작은 100만분의 1m 크기의 광결정 레이저를 개발하였다. 이 레이저는 특수한 구조로 된 반도체 기판에 아주 작은 양의 전류를 흘려주면 빛이 증폭돼 발생하는 것으로, ‘전기만 연결하면’ 레이저를 구동할 수 있게 돼 관련 학계로부터 ‘실용화의 첫걸음’이라는 평가를 받고 있다.
‘자연의 기발한 발명품"으로만 여겨졌던 광구조, 특히 광결정은 통제하기 어려운 빛을 길들이는 데 적격이어서 최근 과학자들의 주목을 받아 왔다. 광결정은 두 가지 물질이 주기적으로 배열돼 특정 파장의 빛을 100% 반사되게 할 수 있는 특이한 성질을 가지고 있다. 이런 특성을 잘 이용하면 작은 공간에 빛을 교묘하게 구속시켜서 신개념의 레이저를 만들 수 있다.
이런 아이디어를 갖고 2004년 9월, KAIST 물리학과 이용희 교수와 박홍규 박사팀은 광결정을 기반으로 하는 물리적으로 구현 가능한 가장 작은 레이저인 극미세 단세포 레이저를 세계최초로 구현시켰으며 미국 과학저널지인 사이언스(SCIENCE)에 "전기로 구동되는 단세포 광결정 레이저의 실험적 구현" 이란 제목의 논문을 발표하였다. 광결정 레이저는 빛이 생성되는 공간을 매우 작게 만들 수 있기 때문에 매우 적은 에너지만으로도 작동할 수 있는 장점이 있다. 광결정 레이저는 크기가 대략 100만분의 1m (머리카락 굵기의 1/100 정도)에 지나지 않아서 빛의 파장보다도 작을 뿐 아니라, 전기로 직접 구동되기 때문에 그 동안 적용이 어려웠던 초고속, 고효율의 광통신과 광컴퓨터 등 광전자 기반 기술에 활용이 가능한 차세대 레이저로 각광 받고 있다.
현재까지 알려진 바로는 광결정 안에 있는 발광물질이 빛을 내도록 하기 위해서는 다른 레이저로 발광물질에 빛을 쏘는 광펌핑 과정이 필요했다. 그러나 광펌핑 과정을 거치게 되면 복잡한 이중 장치가 들어가게 되어서 실제적으로 상업적 응용이 불가능하다. 전기로 구동되는 광결정 레이저 구현의 핵심기술은 작은 전류가 통하는 길이다. 이 길은 광결정의 특징을 훼손시키지 않고 단지 전류만 흐를 수 있도록 구조의 대칭점에 매우 작게 제작돼 있다. 전기로 구동되는 광결정 레이저는 하나의 광자만을 만들 수 있는 ‘단일 광자원’의 가능성을 열어주고 있다. 단일 광자원은 빛 입자, 즉 빛 알갱이를 하나씩 만들어 통신에 활용할 경우 절대 도청이 불가능하다.
이용희 교수는 “이 극미세 레이저를 바탕으로 전류를 아주 약하게 흘려 빛 알갱이인 광자가 하나씩 나오는 레이저 총이 등장하면 비밀 광통신이 가능해질 것”이라며 “광자를 하나씩 보내면 도청을 시도할 때 광자의 상태가 바뀌기 때문에 도청이 불가능하다”고 말한다. 비유적으로 설명하면 처음에 구슬 상태의 광자를 하나씩 보냈을 때 누군가가 도청을 시도하면 구슬 상태가 깨지면서 전혀 다르게 바뀐다. 도청하는 사람은 잘못된 정보를 얻을 뿐 아니라 도청 여부도 금방 들통이 난다. 현재의 통신은 전파든 빛이든 다발 형태로 신호가 전달된다. 예를 들어 신호의 크기로 정보를 보낸다고 할 때 신호의 일부만 빼내면 도청이 가능하다. 또 도청된 신호는 진폭이 다소 줄어들지만 도청 여부를 판단하기가 쉽지 않다. 따라서 광결정 레이저는 앞으로 도청이 불가능한 초고속 광통신 구현에 핵심 소자로 대두될 것으로 예상된다.
우리 대학 바이오 및 뇌공학과 조광현 석좌교수가 미래창조과학부와 한국연구재단이 선정한 이달의 과학기술자상을 수상했다. 조 교수는 IT(정보기술)와 BT(생명기술)의 융합연구인 시스템생물학 기반의 신개념 암세포 사멸 제어기술을 개발한 공로를 인정받았다. 조 교수는 최근 3년간 네이처, 사이언스, 셀의 자매지 등 세계적으로 권위 있는 과학저널에 34편의 논문을 발표하는 등 지금까지 140여 편의 논문을 국제저널에 게재했다. 이 외에도 시스템생물학 교재 저술, 국제학술 백과사전 편찬 등 여러 업적을 이뤘다. 조 교수가 개척한 시스템생물학은 생명체의 근본적 동작원리를 시스템 차원에서 규명하고 제어하는 새로운 생명연구 패러다임이다. 대표적 암 억제 단백질인 p53은 세포의 이상증식 억제 및 암세포 사멸 촉진 단백질로 알려져 많은 과학자들의 연구대상이었지만, 기대와 달리 효과가 미미했고 여러 부작용이 나타났다. 그 이유는 p53의 기능이 복잡하고 다양한 양성 및 음성 피드
2015-02-05우리 학교 신소재공학과 김상욱 교수가 탄소소재*의 특성을 자유롭게 조절할 수 있는 원천기술을 개발해 이달의 과학기술자상 6월 수상자로 선정됐다. * 탄소소재: 그래핀, 탄소나노튜브 등과 같이 탄소 원자로 이뤄진 재료 김 교수는 탄소 소재에 일반 반도체 공정에서 활용되는 도핑 기술*을 도입하여, 기존의 방법으로 구현하기 어려운 탄소 소재의 물성을 구현한 업적을 인정받았다. * 도핑 (doping): 일반적으로 실리콘 반도체 공정에서 사용되는 기술로, 실리콘 외 이종의 원소를 인 위적으로 삽입함으로써 실리콘 반도체의 성질의 조절할 수 있는 기술 탄소나노튜브, 그래핀 등과 같은 탄소 소재는 기존의 재료보다 월등한 기계적, 전기적 특성 등을 지니고 있어 차세대 신소재로서 많은 각광을 받고 있다. 하지만, 다양한 응용 소자에 적용하기에는 그 우수한 특성의 미세한 조절이 매우 어려워, 현실적인 소자 응용에 어려움이 있었다. 김 교수는 탄소소재에 질소(N), 붕소(B) 등의 이종
2014-06-16우리학교 생명화학공학과 정희태 석좌교수가 교육과학기술부ㆍ한국연구재단ㆍ서울경제신문이 공동 주관하는 ‘이달의 과학기술자상’ 7월 수상자로 선정됐다. 정 교수는 전기 전도성이 우수해 ‘꿈의 신소재’로 불리는 그래핀(graphene)의 결정면 크기와 모양을 더 넓게 관찰해 간편히 시각화할 수 있는 기술을 개발, 양질의 그래핀을 만드는데 기여했다. 그래핀은 흑연에서 떼어낸 2차원 평면의 탄소 나노 구조체를 말한다. 이런 단결정 물질을 제조공정으로 넓게 제작하면 그래핀이 다결정성을 띄며 영향을 받아 전기적ㆍ기계적 특성이 낮아지는 문제가 있었다. 정 교수는 그래핀 결정면의 크기와 경계를 쉽고 빠르게 관찰하는 기술로 우수한 특성을 갖는 그래핀 제조를 가능케 했다. 이 원천기술은 그래핀을 이용한 투명전극, 유연한 디스플레이, 태양전지 등의 연구에 응용되고 있다. 이 연구성과는 올해 1월 세계 최고 권위의 과학전문지 네이처의 자매지 ‘네이처
2012-07-04- 생체리듬에 관여․조절하는 새로운 유전자(twenty-four) 발견 공로 - 우리 학교 생명과학과 최준호 석좌교수가 생체리듬에 관여하는 새로운 유전자(twenty-four)를 발견하고, 이 유전자가 생체리듬을 조절한다는 사실을 밝힌 공로로 ‘이달의 과학기술자상’ 12월 수상자로 선정됐다. 최준호 석좌교수는 지난 25년간 세계 최고 권위의 과학전문지인 ‘네이처(Nature)’지를 포함해 저명한 국제학술지에 100여 편의 논문을 발표하는 등 분자바이러스학과 신경생물학 분야에서 꾸준히 독창적인 연구결과를 발표해왔다. 1995년에는 C형 간염 바이러스(HCV)의 NS3 단백질이 RNA 나선효소(helicase) 기능을 갖는다는 사실을 밝힘으로써 C형 간염 치료제 개발의 가능성을 열어, 미국 유전공학회사(Chiron사)와 함께 여러 나라에 국제특허를 출원․등록하였다. 이 결과는 ‘BBRC(Biochemical and Bio
2011-11-30- 복잡계 네트워크 과학 분야 개척 및 응용 연구에 기여한 공로 - 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)은 복잡계 네트워크 과학이라는 분야를 개척하고 활발한 학제간 융합연구를 통해 다양한 학문분야에서 독창적인 연구결과를선보인 정하웅 물리학과 교수(鄭夏雄, 43세)를 ‘이달의 과학기술자상’ 5월 수상자로 선정했다. 정 교수는 통계물리학을 이용하여 최근 집중적인 관심을 끌고 있는 “복잡계(Complex Systems)"라는 대상을 ‘네트워크’라는 개념을 이용하여 이해하는 새로운 시도를 통해 여러 학문 분야를 아우르는 융·복합연구를 성공적으로 이끌며 복잡계 네트워크 과학의 국제적 전문가로 평가받고 있다. 정 교수는 2003년부터 교육과학기술부와 한국연구재단의 선도기초과학연구실(ABRL), 중견연구자지원사업(도약연구) 등의 지원을 받아 『복잡계 네트워크의 구조와 동역학』에 관한 연구를 꾸준히
2010-05-06