< (왼쪽부터) 우리 대학 이상완 교수, 상명대 이지항 교수 >
최근 인공지능 기술이 인식, 생성, 제어, 대화와 같은 실제 문제를 빠르게 해결해 나감에 따라 인간의 역할과 일자리 생태계가 변화하고 있다. 인공지능의 발전 속도를 본다면 가까운 미래에는 인공지능이 인간보다 똑똑해질 수도 있다. 이와 반대로 인공지능을 이용해 인간의 사고력 자체를 향상시킬 순 없을까?
우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장) 연구팀이 인간의 빠른 추론 능력을 유도해 인과관계의 학습 효율을 향상할 수 있는 뇌 기반 인공지능 기술 개발에 성공했다고 31일 밝혔다.
우리는 일상생활에서 다양한 사건을 경험하며 세상의 다양한 요소에 대한 인과관계를 학습해 나가고, 공부할 때는 지식 조각들을 조합하며 통합적인 지식을 습득한다. 이러한 과정은 점진적으로 추론하는 베이시안 모델 또는 특정한 상황에서 한 번의 경험으로부터 빠르게 결론을 도출하는 고속추론 또는 원샷 추론이 있다.
연구팀은 이전 연구에서 인간의 원샷 추론 과정을 모델링하고 전두엽과 해마가 이러한 과정에 관여하고 있음을 규명한 바 있다. 이번 연구에서 이 모델에 인간의 원샷 추론 과정을 특정한 상태로 유도하기 위해 알파고에 사용된 바 있는 심층 강화학습 기술을 접목했다. 이는 강화학습 알고리즘이 인간의 원샷 추론 과정을 수없이 시뮬레이션하면서 전두엽과 해마가 가장 효율적으로 학습할 수 있는 최적의 조건을 탐색하는 과정으로 볼 수 있다.
연구팀은 126명의 인간 피험자를 대상으로 한 인과관계 학습 및 추론 실험에서 제안 기술을 사용해 학습했을 때 단순 반복 학습 대비 최대 약 40%까지 학습 효율이 향상됨을 보였다. 더 나아가 오랜 시간에 걸쳐 신중하게 학습하거나 몇 가지 단서만을 조합해 빠르게 결론을 도출하는 것 같은 개인별 학습 성향을 고려한 맞춤형 설계가 가능함을 보였다.
인간의 사고체계에 대한 뇌과학적인 이해를 바탕으로 원샷 추론과 같은 인간의 잠재적 능력을 극대화하는 이 기술은 차세대 인공지능의 중요한 도전과제 중 하나이며, 뇌 기반 인공지능 기술은 인간과 유사한 사고체계를 바탕으로 가치판단을 할 수 있으므로 장기적으로 인간과 인공지능이 협업하는 분야에서 인공지능의 신뢰성 및 윤리성을 높이는 데도 기여할 수 있을 것으로 기대된다.
< 개발 기술 개념도 >
개발 기술은 스마트 교육, 게임 콘텐츠 개발, 추론 능력 측정, 인지훈련 등 인간의 추론 학습과 관련된 모든 분야에 적용될 수 있다. 기존 기술은 단편적인 기억회상, 특정 인지기능, 정답률 증가와 같은 행동적 측면에 집중해 왔다면, 이번 기술은 인공지능을 이용해 과거의 경험을 일반화시키는 인간의 사고체계 자체를 높이는 가능성을 확인한 최초의 사례로 평가된다.
KAIST에서 연구를 주도한 제1 저자 이지항 교수(현 상명대 서울캠퍼스 조교수)는 "이번 연구를 통해 인간의 인지기능을 인공지능에 이식하여 뇌 기반 인공지능을 실현하는 사례를 보였고, 이를 통해 인간의 고위 수준 인지를 적절한 방향으로 유도할 수 있는 새로운 인간-인공지능 상호작용 패러다임을 제시했다ˮ라고 강조하며, 추후 "인간중심 인공지능 연구 개발뿐만 아니라 바이오메디컬 분야, 특히 정신 건강과 관련된 디지털 치료 분야에 적용했을 때 큰 파급력을 보일 것ˮ이라고 말했다.
연구 책임자인 이상완 교수는 "이번 기술의 잠재력은 인공지능의 방대한 지식을 인간이 빠르게 흡수할 수 있는 형태로 변환할 수 있다는 데 있다ˮ며, "챗 GPT, GPT-4와 같은 언어 인공지능에서 추출되는 다양한 정보를 인간이 빠르게 추론 학습할 수 있게 변환하거나, 게임이나 가상현실의 콘텐츠를 인간의 추론 과정에 맞게 최적화해 몰입도를 높일 수 있고, 반대로 몰입도를 적절한 수준에서 제어할 경우 중독을 완화하는 효과를 기대할 수 있다ˮ라고 말했다.
관련 기술은 국내 및 해외에 특허 출원된 상태이며, KAIST 기술설명회(테크페어)에 소개된 바 있다. 이상완 교수 연구팀은 이러한 뇌 기반 인공지능 원천기술의 파급력을 높이기 위해 2019년 KAIST 신경과학-인공지능 융합연구센터를 설립하고, 구글 딥마인드, 마이크로소프트 연구소, IBM 연구소, 옥스퍼드 대학 등 다양한 해외 연구팀들과 함께 국제공동연구를 수행해 오고 있다.
이번 연구는 `시뮬레이션 기반 실험 디자인을 이용한 인간의 인과관계 추론과정 제어'라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 1월 호 온라인판에 1월 30일 자 게재됐다. (논문명: Controlling human causal inference through in-silico task design)
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 SW스타랩 및 한국연구재단의 지원을 받아 수행됐다.
원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다. 최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적
2025-07-02우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30새 정부 출범과 함께 AI 및 과학기술 분야에 대한 사회적 관심이 크게 높아진 가운데, 우리 대학은 과학기술을 기반으로 국가 혁신을 주도하고 인류의 문제 해결에 앞장서는‘AI 중심 가치 창출형 과학기술특성화대학’으로 거듭날 계획임을 24일 밝혔다. 대한민국이 기술 주도형 사회로 대전환을 맞이하는 시점에서 KAIST는 지난 반세기 동안 국가 발전사의 '스타터킷(Starter Kit)' 역할을 수행해온 경험을 토대로, 단순한 교육·연구기관을 넘어 새로운 사회적 가치를 창출하는 글로벌 혁신 허브로의 도약을 준비하고 있다. 특히 우리 대학은 대한민국이 인공지능 주요 3개국(G3)에 도약할 수 있도록 전 국민이 소외 없이 AI를 활용할 수 있는 'AI 기본사회' 실현을 비전으로 제시했다. 이를 위해 KAIST가 주관하는 대한민국을 대표하는 ‘국가AI연구거점’사업(책임자 김기응)을 통해 AI 기술을 기반으로 산업 경쟁력을 제고하고 사회
2025-06-24임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일
2025-06-16