
< (왼쪽부터) 김재철AI대학원 권태형 박사과정, 고지훈 석박사통합과정 >
우리 대학 김재철AI대학원 권태형 박사과정, 고지훈 석박사통합과정 (지도교수 신기정)이 지난 12월 중국 상해에서 열린 제23회 IEEE International Conference on Data Mining (IEEE ICDM)에서 최우수 논문상(Best Student Paper Runner-up)을 수상했다.
IEEE ICDM은 매년 개최되는 데이터 마이닝 분야 최고 권위의 국제 학회 중 하나다. 올해는 총 200편의 논문이 발표됐고 그 중 권태형, 고지훈 학생이 참여한 논문을 포함한 4편의 논문이 최우수 논문으로 선정됐다.
논문 제목은 ‘텐서코덱: 데이터에 대한 가정이 필요 없는 간결한 텐서의 손실 압축 기법’(TensorCodec: Compact Lossy Compression of Tensors without Strong Data Assumptions)이다.
이 연구에서는 텐서, 즉 고차원 행렬 데이터를 위한 압축 기술을 제시하였다. 텐서-열차 분해(Tensor-Train Decomposition)와 인공신경망을 결합하여 압축 성능을 향상했으며, 행과 열을 재배치하고 차원을 증가시키는 등 입력 텐서의 형태에 대한 최적화를 통해 압축 성능을 추가로 개선하였다. 또한, 다양한 실세계 데이터를 사용하여 제안된 방법의 우수성과 범용성을 검증하였다.
권태형, 고지훈 학생은 “항상 연구에 대한 열정이 가득하시고, 창의적인 아이디어를 제공하여 연구의 돌파구를 열어 주신 신기정 교수님의 지도 덕분에 수상이 가능했다”며 “해당 아이디어가 더욱 고도화되어, 추천시스템, 이상 탐지, AI 모델 경량화 등 다양한 분야에서 활용될 수 있기를 바란다”고 말했다.
이 연구에는 권태형 박사과정, 고지훈 석박통합과정, 신기정 교수 외에 숭실대학교 정진홍 교수가 참여하였으며, 정보통신기획평가원의 지원을 받은 강건하고 공정하며 확장 가능한 데이터 중심의 연속 학습 과제와 한국연구재단의 지원을 받은 부호화된 그래프 마이닝 과제의 성과다.

< IEEE ICDM 2023-Best Student Paper Award - Runner Up 수상 >
기존의 3D 시뮬레이션은 실제 공간을 라이다(LiDAR)나 3D 스캐너로 정밀하게 측정하고, 수천 장의 사진을 카메라 위치 정보와 함께 보정해야 하는 번거로운 과정을 거쳐야 했다. 우리 대학 연구진은 이러한 한계를 극복하고 단 2~3장의 일반 사진만으로도 실험실이나 도심을 고정밀 3D 공간으로 복원해 시뮬레이션 환경을 구축할 수 있는 기술을 선보였다. 이로써 ‘현실을 찍으면 곧바로 가상 환경이 되는’새로운 패러다임을 제시했다. 우리 대학은 전산학부 윤성의 교수 연구팀이 정밀한 카메라 위치 정보 없이도 일반 영상만으로 고품질의 3차원 장면을 복원할 수 있는 새로운 기술 ‘SHARE(Shape-Ray Estimation)’를 개발했다고 6일 밝혔다. 기존의 3D 복원 기술은 소수의 영상으로 3차원 장면을 재현하기 위해 촬영 당시의 정밀한 카메라 위치와 방향 정보가 필수적으로 요구되어, 고가의 특수 장비나 복잡한 보정 과정이 필요하다는 한
2025-11-06세계 최대 전기·전자 기술 학회인 IEEE(Institute of Electrical and Electronics Engineers)의 캐슬린 크레이머(Kathleen A. Kramer) 회장이 30일 우리 대학을 방문해 ‘인공지능의 미래를 함께 그리다’라는 주제로 특별 강연을 진행했다. 전기및전자공학부(학부장 유승협)의 초청으로 콜로퀴엄 연단에 선 크레이머 회장은 IEEE의 핵심 비전인 ‘인류를 위한 기술 발전(Advancing Technology for Humanity)’을 바탕으로 “인공지능(AI)은 더 이상 먼 미래의 개념이 아니라, 혁신의 중심에서 인류의 삶을 변화시키는 기술이 되었다”라고 강조했다. 이어 “기술은 인간의 가치를 중심으로 발전해야 하며, 윤리와 포용성을 기반으로 한 인공지능이 진정한 혁신을 이끌 수 있다”라고 덧붙이며, 인공지능의 발전 방향과 기술
2025-11-03물방울이 맺힌 유리창 밖을 보면 물체의 형체를 선명하게 알아볼 수 없는 것처럼, 카메라 센서에도 산란에 의해 뒤섞인 빛이 들어오면 흐린 영상이 촬영된다. 우리 연구진은 이러한 손상 영상을 시간의 연속성을 분석하여 선명하게 복원하는 AI 기술을 개발했다. 영상 촬영에선 산란 효과 뿐만 아니라 아지랑이와 같은 수차 효과, 야간에 발생하는 광자 잡음 효과 등 다양한 영상 손상 현상이 일어날 수 있는데, 이번에 개발된 기술은 이러한 다양한 손상 현상에 범용적으로 적용될 수 있어 향후 의료·방산·로봇 비전 분야에서 커다란 전환점을 마련할 것으로 기대된다. 우리 대학 바이오및뇌공학과 장무석 교수와 김재철AI대학원 예종철 교수 공동 연구팀이 움직이는 산란 매질 너머의 숨겨진 영상을 복원할 수 있는 ‘비디오 디퓨전 기반 영상 복원 기술(시간축 정보 정합성을 활용해 흐릿하거나 손상된 영상을 디퓨전 모델로 되살리는 기술)’을 세계 최초로 개발했다고
2025-09-01산업및시스템공학과 주상현 박사과정(지도교수: 김현정)이 2025년 8월 17일부터 21일까지 열린 제 21회 IEEE CASE (International Conference on Automation Science and Engineering)에서 Best Student Paper Award를 수상했다. IEEE CASE는 자동화 분야 최대 규모의 국제학회로, 해당 학회에서 한국 기관 소속 연구자가 수상한 첫 사례로 의미가 크다. 수상 논문 제목은 “K-Wafer Cyclic Sequence for Scheduling of Dual-Armed Cluster Tool with Purge Operation”으로, 반도체 및 디스플레이 제조 공정에서 핵심적으로 사용되는 Cluster Tool 장비의 로봇 시퀀스 최적화를 다루고 있다. 특히, 품질에 직접적인 영향을 주는 챔버 클리닝 작업을 포함한 공정에서 기존 방법론들이 최적해를 보장하지 못하는 한계를 극복
2025-08-25회의실에 여러 사람이 동시에 모여 회의하는 경우처럼, 다수의 객체가 동시에 상호작용하는 고차원 상호작용(higher-order interaction)은 다양한 분야에서 발생하며, 실세계의 복잡한 관계를 담고 있다. 하지만 기술적 제약으로 인해 많은 분야에서는 주로 개별 쌍 간의 저차원 정보만 수집돼, 전체 맥락이 손실되고 활용에 제약이 따랐다. KAIST 연구진이 이처럼 불완전한 정보만으로도 고차원 상호작용을 정밀하게 복원*하는 AI ‘마리오(MARIOH)’를 개발하며, 소셜 네트워크, 뇌과학, 생명과학 등 다양한 분야에서 혁신적 분석 가능성을 열었다. *복원: 사라지거나 관측되지 않은 원래 구조를 추정/재구성하는 것 우리 대학 김재철AI대학원의 신기정 교수 연구팀이 저차원 상호작용 정보만으로 고차원 상호작용 구조를 높은 정확도로 복원할 수 있는 인공지능 기술인 ‘마리오(이하 MARIOH, Multiplicity-Aware Hypergraph
2025-08-05