< (왼쪽부터) 신소재공학과 김경민 교수, 김근영 석박사통합과정 >
최근 인간의 뇌를 모방한 뉴로모픽 반도체 소자 연구가 주목받고 있다. 이에서 더 나아가 최근에는 뇌를 넘어 첨단 센서와 휴머노이드 분야에 적용가능한 감각신경계 모사에 관한 연구가 활발하게 진행되고 있다.
우리 대학 신소재공학과 김경민 교수 연구팀이 새로운 메모리 소자인 멤리스터를 사용하여 통증자극 민감도 조절 기능을 갖는 뉴로모픽 통각수용체 소자를 최초로 구현했다고 15일 밝혔다.
※ 멤리스터(memristor): 메모리(memory)와 저항(resistor)의 합성어로, 전류의 흐름에 따라 저항이 변화하는 전자소자
감각신경계의 핵심적인 역할 중 하나는 유해한 자극을 감지해 위험한 상황을 회피하는 것이다. 특히 통각수용체는 자극이 민감도의 임계치를 넘으면 통증 신호를 발생하여 인체가 자극에서 회피할 수 있도록 한다. 이를 위해 통각수용체의 신호 전달에는 통증 신호를 전달하는 흥분성 신경전달물질(Excitatory Neurotransmitter)과 외부 자극에 대한 임계치를 조절하는 억제성 신경전달물질(Inhibitory Neurotransmitter)이 관여하는 것으로 알려져 있다. 특히 억제성 신경전달물질은 흥분 작용과 역균형을 이뤄 신경의 과도한 활성화를 방지하고, 다양한 외부 자극에 적절하게 반응하기 위한 핵심적인 역할을 가지게 된다. <그림 1> 그동안 이러한 복잡한 감각신경계의 동작을 모사하는 전자 소자를 개발하는 연구가 활발히 진행되었는데, 기존의 연구에서는 흥분성 신경전달물질의 특성은 쉽게 구현할 수 있었으나, 억제성 신경전달물질에 의한 임계치 조절 특성까지 동시에 구현하는데 한계가 있었다.
< 그림 1. 흥분성 및 억제성 신경전달물질로 인한 통각수용체의 동작 모식도 >
김경민 교수 연구팀은 이중 전하 저장층 구조를 통해 외부에서의 자극에 대한 임계치를 조절할 수 있는 뉴로모픽 통각수용체 소자를 최초로 개발했다. <그림 2> 두 종류의 서로 다른 전하 저장층은 각각 전도성을 조절하는 흥분성 신경전달물질의 역할과 임계치를 조절하는 억제성 신경전달물질의 역할을 맡아 통각수용체의 필수적인 기능들인 통증 전달 특성(threshold triggering), 통증 완화(Relaxation), 통증 민감화(Sensitization) 등의 특성을 조절할 수 있음을 확인했다. <그림 3> 이는 신경계의 복잡한 기능을 신경계의 동작 원리를 모방하여 단순한 구조의 전자 소자로 구현하는 새로운 방법을 제시한 의의가 있다.
< 그림 2. 인공 통각수용체 소자의 (a) 전류-전압 (I-V) 특성 (b) 임계 스위치 전압 분포 >
또한, 이 소자는 온도 자극에도 반응하는 온도수용체 특성을 보였으며, 특히 억제성 상태를 제어하여 단일 소자가 고온 범위와 저온 범위를 모두 감지할 수 있는 가변적인 온도수용체 특성을 구현할 수 있었다. <그림 4> 이러한 통각수용체, 온도수용체 소자는 인간을 모방하는 휴머노이드 피부에 적용하여 인간과 같은 방식으로 자극을 감지하는 센서로 활용될 수 있다.
김경민 교수는 "이번 연구는 흥분성 및 억제성 신호 작용의 특성을 단일 소자에 구현해, 간단한 반도체 기술로 복잡한 생물학적 감각신경계의 특성을 모사하는 새로운 방법론을 제시한 것에 큰 의의가 있다ˮ며 "이처럼 임계치를 조절할 수 있는 특성은 감각신경계 모사뿐 아니라 임계 스위칭 특성을 활용하는 보안 소자나 차세대 컴퓨팅 소자에도 활용될 수 있을 것으로 기대된다ˮ고 밝혔다.
< 그림 3. 조절 가능한 (a) 통증 전달 특성 (b) 통증 완화 특성 (c) 통증 민감화 (이질통, 통각 과민) 특성 >
한편 이번 연구는 신소재공학과 김근영 석박사통합과정 학생이 제1 저자로 참여했으며, 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials, Impact Factor: 29.4)'에 10월 21일 字 온라인 게재됐다.
이번 연구는 한국연구재단, 나노종합기술원, KAIST, 그리고 SK 하이닉스의 지원을 받아 수행됐다. (논문명: Threshold Modulative Artificial GABAergic Nociceptor, 논문링크: https://doi.org/10.1002/adma.202304148)
< 그림 4. 온도수용체 (a) 온(溫)센서 및 (b) 냉(冷)센서 특성 모사 >
과도한 음주는 알코올성 간질환을 유발하며, 이 중 약 20%는 알코올 지방간염으로 진행되고 이는 간경변증과 간부전으로 이어질 수 있어 조기 진단과 치료가 매우 중요하다. 우리 연구진은 음주 시 활성산소(ROS)가 발생해 간세포 사멸과 염증 반응을 유발하는 새로운 분자 메커니즘을 규명했다. 아울러, 간세포가 신경계의 시냅스처럼 신호를 주고 받는 유사시냅스를 형성하고 염증을 유도하는 ‘새로운 신경학적 경로’를 세계 최초로 밝혀냈다. 우리 대학 의과학대학원 정원일 교수 연구팀이 서울대 보라매 병원 김원 교수 연구팀과의 공동 연구를 통해, 음주로 인한 간 손상 및 염증(알코올 지방간염, Alcohol-associated Steatohepatitis, ASH)의 발생 기전을 분자 수준에서 규명해 알코올 간질환의 진단과 치료에 단서를 제시했다고 17일 밝혔다. 정원일 교수 연구팀은 만성 음주 시 ‘소포성 글루탐산 수송체(VGLUT3)’의 발
2025-07-17인공지능과 로봇 기술의 동반 발전 속에서, 로봇이 사람처럼 효율적으로 환경을 인식하고 반응하는 기술 확보가 중요한 과제로 떠오르고 있다. 이에 한국 연구진이 별도의 복잡한 소프트웨어나 회로 없이도 생명체의 감각 신경계를 모사한 인공 감각 신경계를 새롭게 구현해 주목받고 있다. 이 기술은 에너지 소모를 최소화하면서 외부 자극에 지능적으로 반응할 수 있어, 초소형 로봇이나 로봇 의수 등 의료 및 특수 환경에서의 활용이 기대된다. 우리 대학 전기및전자공학부 최신현 석좌교수, 충남대학교 반도체융합학과 이종원 교수 공동연구팀이 생명체의 감각 신경계 기능을 모사하는 차세대 뉴로모픽 반도체 기반 인공 감각 신경계를 개발하고, 이를 통해 외부 자극에 효율적으로 대응하는 신개념 로봇 시스템을 증명했다고 15일 밝혔다. 사람을 포함한 동물은 안전하거나 익숙한 자극은 무시하고, 중요한 자극에는 선별적으로 민감하게 반응함으로써, 에너지 낭비를 방지하면서도 중요한 자극에 집중해 민첩하게 외부 변
2025-07-15기존 양자점(quantum dots)에는 카이랄 방향성, 광학적 또는 자기적 특성을 복합적으로 구현하는 것이 매우 어려운 기술이었다. KAIST 연구진이 이런 한계를 극복하고, 세계 최초로 광학적 카이랄성과 자성의 융합 특성을 동시에 갖춘 ‘카이럴 자성 양자점’을 개발하고, 이를 활용하여 사람의 뇌처럼 정보를 보고, 판단하고, 저장하며 초기화할 수 있는 기능을 단일 소자에 집약해, 고성능 AI 하드웨어의 새로운 패러다임을 제시했다. 우리 대학 신소재공학과 염지현 교수 연구팀이 빛에 의해 비대칭 반응하는 카이랄성과 자성을 동시에 갖는 특수 나노입자인 양자점(CFQD)을 세계 최초로 개발하고, 저전력 인간 뇌 구조와 작동 방식을 모방한 인공지능 뉴로모픽 소자(ChiropS)까지 성공적으로 구현했다. 신소재공학과 염지현 교수 연구팀이 개발한 카이랄 양자점을 활용한 광 시냅스 트랜지스터는 편광 구분, 멀티 파장 인식, 전기 소거 등 다양한 기능을 단일 소자에 집
2025-04-25기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다. 우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다. 연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수
2025-01-22최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다. 우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다. * 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함 공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을
2024-06-21