< 김재철AI대학원 탁지훈 박사과정 >
우리 대학 김재철AI대학원 박사과정 탁지훈 학생(지도교수 신진우)이 ‘2023 구글 PhD 펠로우’에 선정됐다.
구글 PhD 펠로우십은 컴퓨터 과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 67명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다.
탁지훈 학생은 기계학습(Machine Learning) 분야에서 메타학습(Meta-learning)과 뉴럴필드(Neural Field) 분야의 탁월한 연구 성과를 인정받아 선정되었다. 기계학습 분야에서는 총 19명의 학생이 선발되었으며 아시아 대학에서는 탁지훈 학생이 유일하다.
탁지훈 학생은 특히 기존 뉴럴필드 학습의 한계점들을 새로운 메타학습 방법론을 제안하여 효과적으로 극복한 것으로 평가받는다. 구체적으로는 뉴럴필드 학습에서의 세 가지 비효율적 요소인 학습 시간, 학습 메모리 그리고 저장 공간을 효율적인 메타학습을 제안하여 효율화 하였으며, 이를 활용한 데이터 형태에 구애받지 않은 데이터 압축 기술 역시 제안하였다. 이러한 다양한 연구들은 NeurIPS, ICML, ICLR 등 기계학습 및 딥러닝 분야의 최고 학회에 다수 선정되었다. 또한 그는 구글 딥마인드 연구진들과 협력하여 메타학습과 뉴럴필드 연구를 수행한 바 있다.
< 탁지훈 박사과정 연구성과도: 대규모 뉴럴필드 학습을 위한 효율적 메타학습 방법론 >
시상식은 8월 29일부터 8월 30일 양일간 가상으로 열린 구글 PhD 펠로우십 서밋(Google PhD Fellowship Summit)에서 진행됐으며, 수상자 리스트는 구글 홈페이지에 게시되어있다.
구글은 KAIST 교수진과 학생을 대상으로 연구비 지원(Research Grant), 신진 연구자 지원(Research Scholar), 구글 클라우드 플랫폼 크레딧(GCP Credits), 익스플로어CSR(exploreCSR), PhD 펠로우십(PhD Fellowship), 학생 학회 후원(Student Travel Grants) 등 다양한 산학협력 프로그램으로 지원을 제공했다.
(홈페이지 주소 : https://research.google/outreach/phd-fellowship/recipients)
기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30‘제2의 반도체’로 불리는 리튬이온 전지(LIB)는 가장 높은 시장 점유율로 에너지 저장 장치 시장을 주도하고 있지만, 화재에 취약하는 약점을 가지고 있다. 한국 연구진이 화재로부터 안전하고 값이 저렴한 아연 금속과 공기중의 산소로 구동되는 고에너지 밀도를 가진 고출력 차세대 전지를 개발했다. 우리 대학 신소재공학과 강정구 교수 연구팀이 연세대 한병찬 교수 연구팀, 경북대 최상일 교수 연구팀 및 성균관대 정형모 교수 연구팀과의 공동연구를 통해, 인공지능 기반 이종기능* 전기화학 촉매를 개발 및 촉매 활성 메커니즘을 규명하고, 고효율 아연-공기 전지를 개발했다고 4일 밝혔다. *이종기능: 충전(Charging) 동안에서의 산소 발생(OER) 기능과 방전(Discharging) 동안의 산소 환원 (ORR) 기능 최근 활발하게 연구가 진행되고 있는 아연-공기 전지 배터리의 음극에 사용되는 아연 금속과 공기극*에 필요한 공기는 자연에 풍부하다는 특성 때문에
2025-03-04최근 자동차, 항공, 모빌리티 등 첨단 산업에서는 경량화와 동시에 우수한 기계적 성능을 갖춘 소재에 대한 수요가 증가하고 있다. 국제 공동연구진이 나노 구조를 활용한 초경량 고강도 소재를 개발하여 향후 맞춤형 설계를 통해 다양한 산업에 응용 가능성을 제시했다. 우리 대학 기계공학과 유승화 교수 연구팀이 토론토 대학(Univ. of Toronto) 토빈 필레터 교수(Prof. Tobin Filleter) 연구팀과 협력해, 높은 강성과 강도를 유지하면서도 경량성을 극대화한 나노 격자 구조를 개발했다고 18일 밝혔다. 연구팀은 이번 연구에서 격자 구조의 보(beam) 형상을 최적화해 경량성을 유지하면서도 강성과 강도를 극대화하는 방안을 모색했다. 특히, 다목적 베이지안 최적화(Multi-objective Bayesian Optimization) 알고리즘*을 활용해 인장 및 전단 강성 향상과 무게 감소를 동시에 고려하는 최적 설계를 수행했다. 기존 방식보다 훨씬 적은 데이터(약
2025-02-18식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다. 우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다. 천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않
2024-08-14인공지능 심층신경망 모델의 추천시스템에서 시간이 지남에 따라 사용자의 관심이 변하더라도 변화한 관심 또한 효과적으로 학습할 수 있는 인공지능 훈련 기술 개발이 요구되고 있다. 사용자의 관심이 급변하더라도 기존의 지식을 유지하며 새로운 지식을 축적하는 인공지능 연속 학습을 가능하게 하는 기술이 KAIST 연구진에 의해 개발됐다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 데이터 변화에 적응하며 새로운 지식을 학습함과 동시에 기존의 지식을 망각하지 않는 새로운 연속 학습(continual learning) 기술을 개발했다고 5일 밝혔다. 최근 연속 학습은 훈련 비용을 줄일 수 있도록 프롬프트(prompt) 기반 방식이 대세를 이루고 있다. 각 작업에 특화된 지식을 프롬프트에 저장하고, 적절한 프롬프트를 입력 데이터에 추가해 심층신경망에 전달함으로써 과거 지식을 효과적으로 활용한다. 이재길 교수팀은 기존 접근방식과 다르게 작업 간의 다양한 변화 정도에 적응할 수 있는
2024-08-06