< (왼쪽부터) 신소재공학과 조힘찬 교수, 이재환 석사과정 >
디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다.
현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다.
그러나 InP 양자점은 외부 환경에 매우 민감한 성질을 가지고 있어 픽셀을 만드는 패터닝 공정 적용시 소재의 광학적 특성이 크게 저하되는 단점이 있어 우수한 광학적 및 전기적 특성이 동시에 요구되는 QLED 디스플레이나, 기존 TV 대비 수십배의 초고해상도를 필요로 하는 안경형 증강현실/가상현실 기기 적용에 어려움이 있었다.
< 그림 1. 제시된 공정을 통해 제작된 다양한 패턴. 친환경 나노 발광소재의 표면 물성을 변화시켜 모양에 상관없는 균일한 패턴을 제작할 수 있음. 해당 기술은 웨이퍼 규모의 대규모 패터닝부터 RGB 패터닝, 그리고 발광다이오드 등 다양한 분야에 적용 가능함 >
조 교수 연구팀은 자외선을 받으면 산을 발생시키는 광산 발생기(photoacid generator)의 원리를 활용하여 초미세 양자점 패턴을 제작하였다. 양자점이 자외선을 받은 경우, 생성된 산에 의해 양자점 표면이 변화하면서 자외선을 받지 않은 부분 대비 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다.
연구팀은 패터닝시 손상된 InP 양자점의 발광 효율을 획기적으로 높일 수 있는 양자점 표면 치료법을 개발하였다. 양자점에는 양자점을 둘러싸고 있는 표면 리간드(ligand)들이 있는데, 이 리간드들에 의해 양자점의 발광 효율이 큰 영향을 받는다. 연구팀은 친환경 InP 양자점의 표면 리간드를 개질할 수 있는 맞춤형 후처리 공정을 개발하였고, 이를 통해 최종적으로 높은 발광 효율을 가지는 1 마이크로미터(μm)급 초미세 양자점 패턴을 구현할 수 있었다. 이는 기존의 디스플레이 (TV, 스마트폰, 모니터 등)에서 일반적으로 요구되는 픽셀 너비와 비교했을 때 수십 배 작은 패턴으로 증강현실/가상현실 기기 적용 가능성을 크게 높였다고 할 수 있다.
또한 연구팀은 정밀한 분석을 통해 개발된 광산 발생기 기반의 패터닝 기술의 반응 원리를 규명했고, 개발된 기술이 양자점 LED나 대면적 공정에 쉽게 적용될 수 있음을 증명하였다.
< 그림 2. 광산발생기 기반 직접 광학 패터닝의 원리 및 공정 개요도. 연구팀은 광산을 활용한 리간드 치환 공정을 통해 친환경 InP 양자점의 패터닝을 진행하였다 >
조힘찬 교수는 “이번에 개발한 친환경 InP 양자점 패터닝 기술은 높은 발광 효율과 초고해상도 패턴 제작을 동시에 가능하게 하여 차세대 양자점 LED 기반 디스플레이, 증강현실 기기, 이미지 센서 등 다양한 산업에 실제로 적용될 수 있을 것으로 기대하고 있다”라고 언급했다.
KAIST 신소재공학과 이재환 석사과정 학생이 제1 저자로, 미국 시카고 대학교의 Dmitri V. Talapin 교수가 공동교신저자로, KAIST 생명화학공학과 이도창 교수 연구팀이 공동저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 에너지 레터스 (ACS Energy Letters)' 에 출판됐다. (논문명 : Direct Optical Lithography of Colloidal InP-Based Quantum Dots with Ligand Pair Treatment)
< 그림 3. 광산발생기 기반 직접 광학 패터닝시 발생하는 발광효율 저하 원인과 표면 치료법의 개요도. 연구팀은 발광효율 저하의 주 원인인 밴드갭 내부의 트랩을 표면 치료법을 통해 제거하는 기술을 개발함 >
한편 이번 연구는 한국연구재단 및 삼성전자, 중소벤처기업부 그리고 KAIST의 지원을 받아 수행됐다.
우리 대학 생명과학과 김윤기 교수, 조원기 교수 공동연구팀이 비정상 단백질을 처리하기 위해 형성되는 응집체의 형성 경로를 촉진하는 새로운 인자를 규명했다고 밝혔다. 김윤기 교수, 조원기 교수 공동연구팀은 비정상 단백질 처리경로에서 YTHDF2 단백질이 UPF1을 통해 기존에 알려진 CTIF, eEF1A1, 디낵틴1(Dynactin1) 복합체와 상호작용하며, 비정상 단백질을 비정상 단백질 집합소인 애그리좀(aggresome)으로 수송하는 경로를 조절한다고 밝혔다. 비정상 단백질 처리경로에 관여하는 새로운 인자를 규명하고, 단백질 품질검증에서 중요한 역할을 한다는 사실을 밝힘으로써 비정상 단백질에 의해 야기 되는 퇴행성 신경질환의 치료제 개발에 기여할 것으로 기대된다. 생명과학과 황현정 박사, 박태림 박사과정, 김형인 박사과정이 공동 제1 저자로 참여한 이번 연구는 10월 6일 국제 학술지 `네이처 커뮤니케이션즈(Nature communications)'에 게재됐다. 인간
2023-10-12디스플레이 패널에 들어가는 수많은 픽셀은 빛을 낼 수 있는 발광 소재들을 고해상도로 패터닝(patterning) 함으로써 얻어진다. 특히, 증강현실/가상현실용 근안(near-eye) 디스플레이의 경우 우수한 화질을 얻기 위해서는 기존 디스플레이 이상의 초고해상도 픽셀 패턴이 반드시 필요하다. 우리 대학 신소재공학과 조힘찬 교수 연구팀(공동저자 강정구 교수 연구팀)이 발광성 나노소재의 높은 발광 효율을 유지하며 초고해상도 패턴을 제작하는 패터닝 기술을 개발했다고 17일 밝혔다. 높은 색 순도와 발광 효율로 인해 차세대 발광체로 주목받고 있는 양자점(퀀텀닷)이나 페로브스카이트 나노결정과 같은 용액공정용 나노소재들의 경우, 고유의 우수한 광학적 특성을 유지하면서 균일한 초고해상도 패턴을 제작하는 것이 어렵기 때문에 이를 극복할 수 있는 새로운 소재 및 공정 기술을 개발하는 것이 차세대 디스플레이 구현에 있어서의 필수 요소라고 할 수 있다. 조 교수 연구팀은 양자점과 페
2023-08-17디지털화된 현대인 생활 속에는 웨어러블, 롤러블 디스플레이 등 다양한 형태의 미래 디스플레이가 요구되는데 특히 증강현실 및 가상현실을 위한 스마트 글라스 등 디바이스의 경우에 완벽하게 유저들을 몰입시키는데 요구되는 4K 이상의 해상도가 필요하다. 하지만 디바이스에 요구되는 작은 소비전력 및 제한된 면적에 많은 픽셀을 구현해야 하는 기술적 한계에 봉착하여 완벽하게 구현되지 못하고 있는 실정이다. 우리 대학 전기및전자공학부 김상현 교수 연구팀이 소자의 크기가 마이크로미터(μm, 백만분의 1미터) 정도의 크기를 갖는 마이크로 LED의 소형화될 때 소자 효율이 저하되는 현상을 재규명하고 이를 에피택시 구조 변경으로 근본적인 해결이 가능함을 제시했다고 22일 밝혔다. 에피택시 기술이란 마이크로 LED로 사용되고 있는 초순수 규소 (Silicon) 혹은 사파이어 (Sapphire) 기판을 매개체로 삼아 그 위에 발광체로 쓰이는 질화갈륨 결정체를 쌓아 올리는 공정을 말한다.
2023-03-22초고해상도 디스플레이는 가상 현실(VR), 증강 현실(AR), 스마트 워치 등의 차세대 전자제품 개발에 필수적인 요소로, 헤드 마운트 디스플레이 방식 뿐 아니라 스마트 글라스, 스마트 렌즈 등에도 적용이 가능하다. 이번 연구를 통해 개발된 기술은 이러한 차세대 초고해상도 디스플레이나 다양한 초소형 광전자 소자를 만드는 데 활용될 수 있을 것으로 기대된다. 우리 대학 물리학과 조용훈 교수 연구팀이 집속 이온 빔을 이용하여 평균 머리카락 굵기(약 100 마이크론)의 100분의 1보다도 작은 0.5 마이크론 스케일의 픽셀을 구현할 수 있는 초고해상도 발광 다이오드 (LED) 디스플레이 핵심 기술을 개발했다고 22일 밝혔다. 현재 초고해상도 LED 디스플레이의 픽셀화는 보통 픽셀 주변의 영역을 물리적으로 깎아내는 식각 방법을 사용하는데, 주변에 여러 결함이 발생하여 픽셀이 작아질수록 누설전류가 증가하고 발광 효율이 떨어지는 부작용이 있다. 또한 픽셀화를 위한 패터닝 및 누설전류를
2023-02-22우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용한 1,600PPI*에 상응하는 마이크로LED 디스플레이를 구현하는 데 성공했다고 29일 밝혔다. 1,600 PPI는 초고해상도 증강현실(AR)/가상현실(VR) 디스플레이에 적용 가능한 해상도로써 2020년 출시된 오큘러스(Oculus) 社(現 메타(Meta))의 메타 퀘스트 2(Meta quest 2, 442 PPI)의 3.6배에 해당하는 디스플레이 해상도다. ☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다. ☞ PPI: Pixel per Inch. 디스플레이에서 1인치에 포함되는 픽셀의 갯수 전기및전자공학부 박주혁 박사과정과 금대명 박사가 제1 저자로 주도하고 백우진 박사과정과 대만의 제스퍼 디스플레이(Jasper Display)의 존슨
2022-07-29