< 사진 1. KAIST 뇌인지과학과 최민이 교수 >
파킨슨병 같은 만성 퇴행성 뇌 질환의 경우, 생존 환자의 뇌세포에 직접 접근이 제한적이기 때문에, 뇌 질환 환자의 세포 데이터를 토대로 환자 질병의 메커니즘 하위 유형을 인공지능으로 예측하는 것은 시도된 바가 없다.
우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 프랜시스 크릭 연구소(Francis Crick Institute)와의 공동 연구로 파킨슨병 환자의 개인별 질병 하위 유형을 예측하는 인공지능 기반의 플랫폼을 개발했다고 15일 밝혔다.
최민이 교수 연구팀이 개발한 플랫폼은 파킨슨병 환자의 역분화 만능 줄기세포(hiPSC)에서 분화된 신경 세포의 핵, 미토콘드리아, 리보솜 이미지 정보만 학습해 파킨슨 환자의 병리적 하위 유형을 정확하게 예측한다.
이 기술을 활용하면 환자별로 다르게 나타나는 파킨슨병 양상을 겉으로 보이는 발현형이 아닌 생물학적 메커니즘별로 분류할 수 있다. 이를 통해 원인 미상의 파킨슨병 환자가 속한 분자 세포적 하위 유형별로 진단이 가능해져 환자 맞춤형 치료의 길을 열 수 있다. 또 이 플랫폼은 고속의 대량 스크리닝 시스템을 사용하기 때문에 병리적 하위 유형에 적합한 맞춤형 약물 개발 파이프라인으로도 활용될 수 있다.
< 그림 1. 건강한 기증자와 파킨슨병 환자로부터 얻은 섬유아세포는 줄기세포로 역분화된 후, 일련의 과정을 거쳐 신경세포로 분화됨 >
지금까지 파킨슨병의 치료는 환자 개별의 병리 상태를 고려하지 않고 확률에 기댄 ‘일률적 접근’ 방식을 사용해 왔다. 이러한 접근 방식은 병리적 원인과 치료 방법 사이의 불일치로 인해 치료 효과를 향상하기 어려웠다.
최민이 교수 연구팀이 개발한 플랫폼을 사용하면 개별 환자 뇌세포의 분자 및 세포 정보를 정밀하게 프로파일링할 수 있다. 이를 토대로 환자들의 질병 하위 유형을 정확히 진단할 수 있어서 궁극적으로 ‘정밀 의학 (Precise medicine)’이 가능해진다. 이는 각 개인에게 맞춤화된 치료 (Personalized medicine)로 이어져 치료 효과를 크게 향상할 수 있을 것으로 기대된다.
이 플랫폼은 2012년 노벨의학상 수상 기술인 유도만능줄기세포(iPSC: 성인 피부세포나 혈액에서 얻은 체세포를 태아기의 미분화 상태로 리프로그래밍한 세포. 어떤 장기 세포로도 분화가 가능)를 분화시켜 얻은 뇌세포를 사용하는 ‘접시 속 질병(disease in a dish)’ 패러다임이다. 이는 퇴행성 뇌 질환처럼 병변을 직접 얻을 수 없거나, 인간의 뇌를 정확하게 모사할 수 없는 동물 모델의 한계점을 극복할 수 있는 기술 중 하나로 주목받고 있다. 특히, 접시 속에 배양한 자신의 표적 질병 세포를 순차적으로 이미징하면 일련의 병리적 사건을 추적할 수 있어 질병 진행에 따른 약물 반응 결과를 예측할 수 있다는 이점이 있다.
< 그림 2 a. 고속-대용량 이미징 시스템을 통해 촬영된 환자 역분화 만능 줄기세포 유도 신경 세포의 예 (핵: 파란색, 미토콘드리아: 빨간색, 리보좀: 초록색). 전체 사진을 8 X 8 로 슬라이스 한 후 각각의 조각 이미지. b. 예측 결과를 보여주는 오차 행렬 (Confusion Matrix) >
교신 저자인 최민이 교수는 "이번 연구는 실험실에서 얻은 생물학적 데이터를 인공지능에 효과적으로 학습시켜, 정확도가 높은 질병 하위 유형 분류 모델을 생성하는 방법을 구체적으로 소개했다”며, "이 플랫폼은 자폐 스펙트럼과 같이 환자 개인별 증상이 뚜렷하게 다른 뇌 질환의 하위 유형을 분류하는 데에도 유용할 것이며, 이를 통해 효과적인 치료법 개발도 가능해질 것이다”라고 연구의 의의를 설명했다.
< 그림 3. 인공지능 기반의 파킨슨 하위 유형 예측 플랫폼: 데이터를 학습한 머신러닝 기반 클래시파이어 (Classifer)는 (1) 모집단을 파킨슨 그룹과 건강한 그룹으로 나누고, 파킨슨 그룹 환자 개개인을 기전적 하위 유형에 따라 추가적으로 분류해 (2) 파킨슨병 환자들의 고유한 질병 하위 유형에 맞는 기전 특이적 효능 약물들을 매칭시킴으로써 파킨슨병 치료 효과를 개선할 수 있음 >
이번 논문은 영국 Medical Research Council (MRC)와 대교-KAIST 인지 향상 연구센터의 지원으로 수행됐으며, 국제 학술지 ‘네이처 머신 인텔리젼스 (Nature Machine Intelligence, IF = 25.8) 8월호에 출판됐다 (논문명: Prediction of mechanistic subtypes of Parkinson’s using patient-derived stem cell model)
우리 대학이 뉴욕대학교(New York University, 총장 린다 밀스, Linda G. Mills)와 인공지능 분야 공동학위제(Joint Degree) 도입을 위한 업무협약을 9일 오후 체결했다. 이번 협약은 인공지능 분야의 역량 강화하고 글로벌 인재를 양성하는 것은 단순한 기술 교육을 넘어 미래 사회 전반에 큰 발전을 도모할 수 있는 필수 요소라는 양교의 공감대를 바탕으로 추진됐다. 양교는 그간 인공지능 및 이와 융합한 다양한 산업 분야의 공동연구 그룹을 운영해 왔으며, 이번 협약을 바탕으로 인공지능 관련 분야 대학원 과정의 공동학위제를 설계하기 위한 운영위원회를 올해 안에 설치할 예정이다. 우리 대학 관계자는 "인공지능 공동학위제가 시행되면 KAIST가 뉴욕대와 힘을 합쳐 ‘하나의 인공지능 학위’를 창조하는 사상 초유의 혁신적 실험이 될 것으로 기대한다"라고 전했다. 위원회는 양교 교수진을 동수로 포함해 구성하며, ▴교육과정 구조
2024-09-10우리 대학 전산학부 안성진 교수 연구팀이 세계적인 인공지능 권위자인 캐나다의 요슈아 벤지오(Yoshua Bengio) 교수와 함께 ‘KAIST-밀라(MILA) 프리프론탈 인공지능 연구센터’를 KAIST에 7월 1일부로 설립했다고 4일 밝혔다. 이 사업은 과학기술정보통신부와 한국연구재단이 지원하는 ‘2024년도 해외우수연구기관 협력허브구축사업’의 일환으로, 안성진 교수 연구팀은 2024년 7월부터 2028년 12월까지 총 27억 원의 지원을 받게 된다. 이 센터는 차세대 인공지능 기술 개발을 위한 국제공동연구의 중심지로서 역할을 하게 될 예정이다. 요슈아 벤지오 교수는 딥러닝 분야의 창시자 중 한 명으로, 현대 인공지능 연구에 지대한 영향을 미친 인물이다. 그의 연구는 현재의 딥러닝 기술을 탄생시키고 발전시키는 데 중요한 역할을 했다. KAIST 안성진 교수팀과의 이번 협력은 요슈아 벤지오 교수의 몬트리올 학습 알고리즘 연구
2024-09-04우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제학술대회 중 하나인 ECCV 2024 (European Conference on Computer Vision)에 채택되어, 컴퓨터 비전 분야 세계 최고의 연구 역량을 다시 한번 인정받았다. CVPR, ICCV와 함께 컴퓨터 비전 분야 뿐 아니라 전체 인공지능 분야에서도 세계 최고 권위 학술대회로 꼽히는 ECCV는 1990년부터 격년으로 개최되는 학술대회로, Google Scholar 기준 H5-색인 206을 기록하고 있으며, 공학 및 컴퓨터과학 (Engineering & Computer Science)전분야에서 최고 수준의 국제 학술대회 중 하나이다. 이번 ECCV 2024에는 총 8,585개의 논문들이 제출되었고 그 중 2,395개의 논문이 채택되어 약 27.9%의 낮은 채택률을 기록하였다. 단일 연구실에서 12편의 논문이 채택된 것은 극히 이례적인 경우다. 윤국진 교수 연구팀의
2024-08-29우리 대학은 GS건설(대표 허윤홍)과 '스마트시티 기술 선도 역량 상호 발전을 위한 협력관계 구축' 양해각서를 22일 체결했다. 이번 협약을 통해 양 기관은 미래 스마트 도시에 필요한 디지털 기술 연구센터를 연내 우리 대학에 설립한다. 해당 산학연구센터는 디지털 전환으로 생성되는 다양한 도시 데이터를 최적화, 머신러닝, 인공지능 학습 등을 통해 디지털 지능(Digital Intelligence)을 발굴하는 연구를 수행한다. 이를 통해 도시민의 편의, 건강 등 삶의 질을 향상하는 동시에 과밀화, 에너지 전환, 기후변화 등 도시가 당면한 복합적인 미래 도전에 대한 과학적 해결 방법을 연구한다. 국내 최초로 시도되는 이번 도시 디지털 지능 산학 협력은 ▴도시 인프라 디지털 전환 ▴디지털 도시 지능(Urban Digital Intelligence) 발굴 ▴도시-인간 상호작용(Urban-Human Interaction) ▴디지털 도시 툴킷(Urban Digital Toolkit
2024-08-22과학기술정보통신부와 정보통신기획평가원은 대한민국 AI G3 도약을 위해, 대한민국을 대표하는 AI 연구거점을 구축·운영할 수행기관으로 KAIST(책임자 김기응)·고려대(책임자 이성환)·연세대(책임자 김선주)·POSTECH(책임자 조민수) 컨소시엄을 선정했다고 18일 밝혔다. 글로벌 AI 선진국은 AI의 경제·안보적 중요성을 인식하고, 국가 주도 대규모 투자를 통해 AI 연구 구심점을 조성해오고 있으며, 이에 발맞춰 우리나라도 세계 최고 수준 AI 산·학·연 협력 생태계를 집약하는 구심점 조성을 위해 대한민국을 대표하는 AI 연구거점 구축을 추진한다고 과기정통부는 밝혔다. 실제 캐나다는 정부 주도로 3대 국가 AI 연구소 구축(토론토 vector institute가 대표적)을, 영국은 정부기관 및 5개 대학이 공동 투자해 앨런 튜링 연구소 설립을, 미국은 국립과학재단(NSF)가 나서 미국 전
2024-08-19