
< (왼쪽부터) 우리 대학 생명과학과 정인경 교수, 서울대 암연구소 김태유 교수, 우리 대학 생명과학과 김규광 박사과정, 김무영 박사, 이정운 박사 >
세계 최초로 예전에 비해 최대 규모로 한국인 대장암 환자 3차원 게놈 지도를 작성하여 화제다.
우리 대학 생명과학과 정인경 교수 연구팀이 서울대학교 암연구소 김태유 교수 연구팀과의 공동연구를 통해 인공지능 기반 알고리즘을 활용, 한국인 대장암 환자의 3차원 게놈 지도를 최초로 제시했으며 이를 토대로 암 세포 특이적인 유전자 조절 기전을 통해 특정 종양유전자들이 과발현되는 현상을 규명했다고 24일 밝혔다.
1차원적 게놈 서열 분석에 기반한 현재의 암 유전체 연구는 종양유전자들의 과발현 기작을 설명하는데 한계가 있었다. 하지만 3차원 공간상에 게놈이 어떻게 배열되는지를 분석하는 3차원 게놈 (3D genome) 구조 연구는 이러한 한계를 극복 가능케 하고 있다. 본 연구에서는 정상 세포에서는 존재하지 않는 암 세포 특이적 염색질 고리(chromatin loop) 구조가 유전자 발현 촉진 인자인 인핸서와 종양유전자 사이의 상호작용을 형성하여 과발현을 유도하는 인핸서 납치(enhancer-hijacking) 현상에 초점을 두어 연구하였다.
우리 대학 생명과학과 김규광 박사과정이 주도한 이번 연구는 게놈간의 공간상 상호작용을 측정할 수 있는 대용량 염색체 구조 포착 Hi-C (High-throughput Chromosome Conformation Capture) 실험 기법을 활용하여 대장암 3차원 게놈 지도를 작성하고 대장암 특이적 3차원 게놈 변화를 환자 개개인별로 분석할 수 있는 인공지능 기반 알고리즘을 개발했다. 그 결과 공동연구팀은 광범위한 규모의 3차원 게놈 구조 변화와 이로 인한 다양한 종양유전자의 활성화를 확인했다.

< 그림 1. 연구 모식도 >
연구팀은 이번 연구를 통해 암 특이적 3차원 게놈 구조의 변화로 인한 종양유전자 활성 기작을 명확히 제시하였으며 이로 인한 환자 예후와 약물 반응 등 임상적인 특성과의 연관성까지 제시해 맞춤 치료 원천기술 확보에 기여했다.
지금까지 암 세포주에 대한 3차원 게놈 구조 연구는 일부 보고 되었으나, 대규모 환자 암조직에 대한 연구는 조직 내 세포 이질성, 종양 순도, 암세포 이질성 등의 문제로 인한 정밀 암 특이적 3차원 게놈 구조 분석의 한계로 수행되지 못하였다.
반면에 이번 연구에서 연구팀은 AI 기반 알고리즘으로 환자 개인 종양 조직으로부터 얻어진 복잡한 신호를 해석할 수 있었으며 그 결과 최대 규모인 환자 40명의 종양 조직과 인접한 정상 대장 조직을 사용해 3차원 게놈 지도를 작성할 수 있었다. 또한 DNA 서열정보를 보여주는 전장유전체 지도의 경우 다양한 인종에 대해 생산되고 있고 한국인의 전장유전체 지도 또한 개발되었으나 한국인 3차원 게놈 지도, 특히 종양 조직에 대한 3차원 게놈 지도는 이번 연구에서 최초로 제시됐다.
이번 연구 결과는 국제 학술지, `셀 리포츠(Cell Reports, IF=9.995)'에 7월 13일 자로 출판됐다. (논문명: Spatial and clonality-resolved 3D cancer genome alterations reveal enhancer-hijacking as a potential prognostic marker for colorectal cancer)

< 그림 2. 암에서는 다양한 종류의 변이가 발생하며 암 특이적 3차원 게놈 구조 변화 또한 발생한다. 이로 인해 유전자가 잘못된 전자조절인자와 공간상에 인접하게 되어 비정상적인 발현이 일어나는‘인핸서-납치’현상이 발생한다. 본 연구에서는 최초로 최대 규모의 한국인 대장암 환자의 3차원 게놈 지도를 작성하였으며 이를 인공지능 기반 알고리즘을 이용하여 분석, 종양유전자의 활성화와 그 영향을 규명하였다. >
서울대학교병원 혈액종양내과 김태유 교수는 “이러한 결과는 개별 암 환자들마다 서로 다르게 나타나는 종양 이질성을 이해하는 데 매우 중요한 요소가 될 수 있으며, 이를 이용한 환자 맞춤형 치료 연구의 시발점이 될 것이다”라고 말했다. 생명과학과 정인경 교수는 “기존의 점돌연변이나 유전체 변이만으로는 설명이 어려운 암 유전체를 3차원 게놈 구조 관점에서 재해독하고 신규 암 타겟을 발굴할 수 있는 수 있는 새로운 접근법을 제시했다”라고 밝혔다.
한편 이번 연구는 과학기술정보통신부와 서경배과학재단의 지원을 받아 수행됐다.
우리 대학은 11월 14일, 컴퓨터 과학 분야 세계적 권위의 학술대회인 ‘정보 및 지식관리 학회(The 34th International Conference on Information and Knowledge Management, CIKM 2025)’에서‘인간 중심 AI: 설명가능성과 신뢰성에서 실행 가능한 윤리까지(Human-Centric AI: From Explainability and Trustworthiness to Actionable Ethics)’를 주제로 국제 워크숍(워크샵 조직위원장: KAIST 김재철AI대학원 최재식 교수)을 개최할 예정이다. 이번 행사는 KAIST 김재철AI대학원이 주도하고 서울대, 서강대, 성균관대, 한국전자통신연구원(ETRI), 독일 TU Berlin 등 국내외 유수 기관이 공동으로 참여하는 자리다. AI 기술의 잠재적 위험을 줄이고 책임 있는 활용을 위한 ‘인간 중심 AI&rsquo
2025-11-07이제는 단순히 대화만 하는 음성비서를 넘어, AI가 직접 화면을 보고 판단해 택시를 호출하고 SRT 티켓을 예매하는 시대가 열렸다. 우리 대학은 전산학부 신인식 교수(㈜플루이즈 대표)가 이끄는 AutoPhone 팀(플루이즈·KAIST·고려대·성균관대)이 과학기술정보통신부가 주최한 ‘2025 인공지능 챔피언(AI Champion) 경진대회’에서 초대 AI 챔피언(1위)에 선정됐다고 6일 밝혔다. 이번 대회는 AI 기술의 혁신성, 사회적 파급력, 사업화 가능성을 종합 평가하는 국내 최대 규모의 AI 기술 경진대회로, 전국 630개 팀이 참가한 가운데 AutoPhone 팀이 최고 영예를 차지하며 연구개발비 30억 원을 지원받는다. AutoPhone 팀이 개발한 ‘FluidGPT’는 사용자의 음성 명령을 이해해 스마트폰이 스스로 앱을 실행하고 클릭·입력·결제까지 완료하는 완전
2025-11-06세계 최대 전기·전자 기술 학회인 IEEE(Institute of Electrical and Electronics Engineers)의 캐슬린 크레이머(Kathleen A. Kramer) 회장이 30일 우리 대학을 방문해 ‘인공지능의 미래를 함께 그리다’라는 주제로 특별 강연을 진행했다. 전기및전자공학부(학부장 유승협)의 초청으로 콜로퀴엄 연단에 선 크레이머 회장은 IEEE의 핵심 비전인 ‘인류를 위한 기술 발전(Advancing Technology for Humanity)’을 바탕으로 “인공지능(AI)은 더 이상 먼 미래의 개념이 아니라, 혁신의 중심에서 인류의 삶을 변화시키는 기술이 되었다”라고 강조했다. 이어 “기술은 인간의 가치를 중심으로 발전해야 하며, 윤리와 포용성을 기반으로 한 인공지능이 진정한 혁신을 이끌 수 있다”라고 덧붙이며, 인공지능의 발전 방향과 기술
2025-11-03우리 대학은 도시인공지능연구소(소장 건설및 환경공학과 윤윤진 지정석좌교수)가 미국 MIT 센서블 시티 랩(Senseable City Lab, 소장 Carlo Ratti 교수)과 함께 ‘도시와 인공지능(Urban AI)’분야의 공동연구를 진행하고, 그 성과를 서울 코엑스에서 열린 9월 말 ‘스마트라이프위크 2025(Smart Life Week 2025)’ 전시를 통해 공개했다고 10월 29일 밝혔다. KAIST와 MIT는 도시의 주요 문제를 인공지능으로 해석하는‘Urban AI 공동연구 프로그램’을 추진해 왔으며, 이번 전시에서는 ▲도시 기후 변화 ▲녹지 환경 ▲데이터 포용성 등 세 가지 주제를 중심으로 연구 성과를 시민이 직접 체험할 수 있는 형태로 선보였다. 양 기관은 이번 협력을 통해 AI 기술이 도시의 문제를 계산하는 도구를 넘어, 사회적 이해와 공감을 이끄는 새로운 지능으로 확장될 수 있음을 보여주며 ▲도
2025-10-29보통 그림과 글자가 함께 있을 때 사람의 시선이 그림에 먼저 가는 것처럼, 여러 감각을 동시에 활용하는 ‘멀티모달 인공지능’도 특정 데이터에 더 크게 의존하는 경향이 있다. 우리 대학 연구진은 이러한 상황에서도 그림과 글자를 모두 고르게 인식하여 훨씬 더 정확한 예측을 가능케 하는 멀티모달 인공지능 학습 기술을 개발했다. 우리 대학은 전기및전자공학부 황의종 교수 연구팀이 다양한 데이터 유형을 한 번에 처리해야 하는 멀티모달 인공지능이 모든 데이터를 고르게 활용할 수 있도록 돕는 새로운 학습 데이터 증강 기술을 개발했다고 14일 밝혔다. 멀티모달 인공지능은 텍스트, 영상 등 여러 데이터를 동시에 활용해 판단하고 있다. 하지만 인공지능은 여러 정보를 받아들일 때, 한쪽 데이터에 치우쳐 판단하는 경향을 보여 예측 성능이 떨어지는 문제가 있었다. 연구팀은 이 문제를 해결하기 위해, 일부러 서로 어울리지 않는 데이터를 섞어서 학습에 사용했다. 그러면 인공지능은
2025-10-14