
< (왼쪽부터) 우리 대학 화학과 박정영 교수, GIST 문봉진 교수, 브룩헤이븐 국립연구소 김정진 박사 >
기후변화를 포함한 환경 및 에너지 문제에 직접 맞닿아 있는 온실가스 전환 기술은 주로 G7 국가를 비롯한 OECD 회원국들을 중심으로 최근 많은 논의가 이뤄지고 있으며, 대한민국 역시 2050년까지 탄소중립 글로벌 스탠다드 달성을 위해 산・학・연 및 민・관 협력 연구를 활발히 촉진하고 있다. 대기 중의 온실가스를 제거함과 동시에, 미래 청정 연료로 주목받는 메탄올 합성에 필요한 이산화탄소 분해 반응은 탄소중립 달성을 위한 산업계 패러다임 전환 대응에 필요한 핵심 기술이지만, 이산화탄소 분자가 화학적으로 매우 안정된 탓에 공업적으로 유용한 화학 물질로의 전환은 여전히 난제로 여겨진다.
우리 대학 화학과 박정영 교수 연구팀이 광주과학기술원 (GIST) 물리·광과학과 문봉진 교수 연구팀과 공동연구를 통해 초미세 계단형 구리(Cu) 촉매 표면이 이산화탄소(CO2) 분자를 보다 효과적으로 분해할 수 있음을 입증했다고 26일 밝혔다.
포집된 온실가스의 전환은 일반적으로 고온・고압의 촉매 화학반응 환경에서 이뤄지고 있다. 보통 구리 기반 촉매물질을 이용하여 이산화탄소 분자가 일산화탄소(CO) 및 산소 원자(O)로 분해할 때 수십 기압에 이르는 고압 반응환경이 요구된다. 따라서, 기존의 촉매 물질을 개선하고 최적의 이산화탄소 전환 반응을 유도함으로써 온실가스의 전환 효율을 획기적으로 높일 수 있는 새로운 촉매의 개발이 필요한 실정이다.

< 그림 1. 실시간 직접 관찰된 초미세 계단형 구리 촉매의 표면 구조. 상압 전자터널링 현미경을 이용해 실시간으로 직접 관찰한 초미세 계단형 구리 표면의 모습. 약 1.8 나노미터(nm・10억분의 1미터) 간격을 갖는 미세 계단형 구리면은 상압 환경에서 이산화탄소 분자들에 노출된 이후, 각 계단면이 불규칙하게 분해되는 경향을 보인다. 이는 이산화탄소 분자들이 초미세 계단 구조를 통해 일산화탄소 분자 및 산소 원자로 분해되면서 구리 촉매의 표면이 재구조화되는데 기인한다. >
상압 전자터널링 현미경(AP-STM) 기술을 활용해 직접 관찰된 연구팀의 이번 연구 결과는, 머리카락 두께의 10만 분의 1 크기의 계단형 표면 구조가 온실가스의 분해 반응 향상에 크게 기여한다는 시각적 증거를 처음으로 제시했다. 연구진은 그 크기가 수 옹스트롬(Å·100억 분의 1 미터)에 불과한 이산화탄소 분자는 촉매 물질의 표면 구조에 따라서 반응 활성도가 달라질 수 있다는 점에 착안, 머리카락 두께의 10만 분의 1에 불과한 계단형 초미세 구리 표면과 반응하는 이산화탄소 분자의 분해 과정을 실시간 포착했다.
초미세 계단형 구조를 갖는 구리 원자의 표면 배열은 평평한 구조를 갖는 넓은 구리 표면 구조에 비해 훨씬 낮은 활성화 에너지를 필요로 하기 때문에 온실가스의 분해가 상대적으로 용이하다. 연구진은 관찰 결과, 구리 촉매 표면의 계단 위치와 충돌한 이산화탄소 분자가 상온에서도 쉽게 분해됐고, 더 나아가 분해된 일산화탄소 분자와 산소 원자가 표면의 구조변화를 동시에 유도함으로써 촉매반응 경로에 영향을 끼칠 수 있음을 발견했다.

< 그림 2. 방사광가속기 시설을 활용한 표면 구조 재구조화 현상의 규명. 이산화탄소 분자의 분해 결과 생성된 일산화탄소 분자는 초미세 계단형 구리 표면 구조와 강하게 반응하고, 직접 관찰된 바와 같이 표면 구조의 재구조화 현상을 유도한다. 방사광가속기 기반의 상압 환경 X-선 광전자분광(AP-XPS) 기법을 통해 분석된 화학 결합 에너지 변화 결과는 일산화탄소 가스 반응환경에서 주입된 가스의 압력과 노출 시간에 따라 달라짐을 알 수 있다. >
박정영 교수는 “이번 연구는 기존에 진행된 구리 표면에서의 이산화탄소 촉매 현상의 이해를 뛰어넘는 새로운 발견이며, 이를 통해 고효율 이산화탄소 촉매의 개발을 통해 인류의 가장 시급한 문제 중의 하나인 지구온난화 및 지속가능성 문제 해결에 기여할 것이다”라고 밝혔다.
한국연구재단(NRF) 중견연구자지원사업, 과학기술분야 기초연구사업과 한-프랑스 협력기반조성사업(STAR) 등의 지원을 받은 이번 연구성과는 국제학술지 네이처 커뮤니케이션스(Nature Communications IF 17.694) 온라인판에 6월 6일 자 게재됐다. (논문제목: Revealing CO2 dissociation pathways at vicinal copper (997) interfaces)
우리 대학 생명화학공학과 최민기 교수가 과학기술정보통신부와 한국연구재단이 공동 주관하는 ‘이달의 과학기술인상’을 수상한다. 이번 시상은 ‘평화와 발전을 위한 세계과학의 날(11월 10일)’을 기념해 진행된다. 이달의 과학기술인상은 최근 3년간 독창적인 연구 성과를 창출해 과학기술 발전에 공헌한 연구개발자를 매달 1명씩 선정해 과기정통부 장관상과 상금 1,000만원을 수여하는 상이다. 최민기 교수는 친환경 암모니아 합성을 위한 고성능 촉매를 개발해 탄소중립과 수소 경제 전환을 위한 핵심 기술을 마련한 공로를 인정받았다. 암모니아는 비료와 의약품 등 필수 산업 원료일 뿐 아니라 액화가 쉽고 수소 저장 밀도가 높아 재생에너지 기반 수소를 저장·운송할 수 있는 차세대 에너지 매개체로 주목받고 있다. 그러나 현재 상용화된 ‘하버-보슈 공정’은 500℃ 이상, 100기압 이상의 고온·고압이 필요해
2025-11-05우리 대학 녹색성장지속가능대학원 전해원 교수 연구팀이 미국 프린스턴대학교 앤드링거 환경·에너지 연구센터와 탄소중립 공동연구 추진을 위한 양해각서(MOU)를 체결하고, ‘넷제로 코리아(Net-Zero Korea, 이하 NZK)’ 프로젝트를 공식 출범했다고 27일 밝혔다. 이번 프로젝트는 부산 벡스코에서 열린 기후산업국제박람회(WCE) 현장에서 발표됐으며, 구글의 시드펀딩으로 시작된다. NZK 프로젝트는 단기적으로 한국의 에너지 및 산업 부문의 탄소중립 전환을 가속화하고, 중장기적으로는 정책 수립과 실행을 위한 한국의 에너지시스템 모델링 역량을 강화하는 것을 목표로 한다. 에너지 시스템 모델링은 청정에너지로과 탄소중립으로의 전환을 연구하는데 핵심적인 역할을 한다. 특히, 이번 연구는 프린스턴대가 2021년 발표해 주목을 받은 ‘넷제로 아메리카(Net-Zero America)’ 프로젝트의 선도적 모델링 방법론을 KAIST의
2025-08-28우리 대학 녹색성장지속가능대학원(대학원장 엄지용)과 홍콩대학교(HKU) 탄소중립연구소(Deputy Director 저우 유위(Yuyu Zhou) 교수)는 8월 20일 홍콩대학교 탄소중립연구소에서 회의를 갖고, 연구 협력, 교육 프로그램 공동 개발, 정책 교류 활성화를 위한 양해각서(MOU)에 서명했다. 이번 협약은 한국과 홍콩이 각각 2050 탄소중립 달성을 목표로 추진 중인 국가·지역 전략의 이행을 가속화하고, 글로벌 기후변화 대응 역량을 강화하기 위한 공동 노력의 일환이다. 양 기관은 이번 협약을 통해 다음과 같은 분야에서 협력한다. ▲ 연구 협력: 에너지·지구시스템 모델링, 기후 보건, 기후경제·정책 분석, 녹색에너지 시스템, 자연기반 해법, 기후금융, 자원순환 등 ▲ 교육 협력: 지속가능성·기후금융·ESG 분야의 리더십 교육, 학생·교원 교류 프로그램, 공동 워크숍·학술행사, 대학원
2025-08-26직접공기포집(DAC, Direct Air Capture)은 대기 중에 아주 희박하게(400ppm 이하) 존재하는 이산화탄소를 직접 걸러내는 기술이다. 우리 연구진은 이번에 뜨거운 증기나 복잡한 설비 없이, 스마트폰 충전 전압(3V) 수준의 저전력만으로 95% 이상의 고순도 이산화탄소를 포집하는 데 성공했다. 기존 DAC 기술은 높은 에너지 비용이 가장 큰 걸림돌이었지만, 이번 연구는 실질적 상용화 가능성을 보여준 성과로 평가된다. 이미 해외 특허 출원이 완료됐으며, 태양광·풍력 등 재생에너지와도 쉽게 연계할 수 있어 탄소중립 공정 전환을 앞당길 ‘게임 체인저’ 기술로 주목받고 있다. 우리 대학 생명화학공학과 고동연 교수 연구팀이 미국 MIT 화학공학과 T. 앨런 해튼 교수팀과 공동 연구를 통해, 전도성 은나노 파이버 기반 한 초고효율 전기 구동 DAC(e-DAC, Electrified Direct Air Capture) 기술을 세계 최초로 개
2025-08-25메탄은 이산화탄소(CO₂)보다 약 25배 강한 온실가스로, 기후변화 대응에서 가장 시급한 감축 대상 중 하나로 천연가스, 매립지 가스, 축산·폐수 처리 등 다양한 배출원에서 종종 에탄과 혼합된 형태로 존재한다. 천연가스 중 에탄도 큰 비중을 차지하며, 메탄 다음으로 최대 15%까지 포함돼 있다. 우리 연구진이 에탄이 이런 메탄을 에너지원으로 사용하는 ‘편성 메탄산화균’의 대사에 영향을 줘서 메탄을 저감시키고 바이오플라스틱 생산에 활용할 가능성을 제시했다. 우리 대학 건설및환경공학과 명재욱 교수 연구팀이 미국 스탠퍼드 대학교와의 공동연구를 통해, 천연가스의 주요 부성분인 에탄(C2H6)이 ‘편성 메탄산화균(Methylosinus trichosporium OB3b)’의 핵심 대사에 미치는 영향을 규명했다고 7일 밝혔다. 메탄산화균은 산소가 있는 조건에서 메탄을 에너지원으로 사용해 생장할 수 있는 세균으로, 이 중 &lsq
2025-08-07