< (왼쪽부터) 전기및전자공학부 유민수 교수, 김재철AI대학원 김범준 교수 >
우리 대학 전기및전자공학부 유민수 교수와 김재철AI대학원 김범준 교수가 구글(Google) 본사에서 수여하는 구글 리서치 학술상(Google Research Scholar Award) 올해 수상자로 선정됐다고 9일 밝혔다.
이 상은 전 세계 대학들을 대상으로 컴퓨터 과학 및 관련 분야를 연구하고 있는 신진 연구자들과 구글과의 협업을 촉진하고 장기적 협력 관계를 도모하기 위해 구글 본사에서 2021년에 신설한 프로그램이다. 유민수 교수와 김범준 교수는 학계에서 7년 미만으로 활동한 신진 연구자 자격으로 전 세계에서 선정된 총 78명의 신진 교원 수상자 명단에 포함됐다. 국내 소재 대학에 재직 중인 교수는 3명이 선정됐으며, 이 중 유민수 교수와 김범준 교수를 포함하여 2명이 KAIST 소속이다.
유민수 교수는 ‘차등 프라이버시 기술 기반 기계학습을 위한 하드웨어/소프트웨어 설계(Co-Designing Hardware/Software Systems for Differentially Private Machine Learning)'이라는 연구 주제로 수상을 하게 되었다. 최근 들어 챗GPT(ChatGPT)로 각광받고 있는 초거대형 언어 모델(LLM, Large Language Model) 기반의 생성형 AI(Generative AI) 기술은 AI 서비스 품질 향상을 위해 대량의 사용자 데이터를 수집 및 활용하여 AI 모델의 정확도를 개선하고 있다. 하지만 사용자의 민감한 개인정보가 데이터센터로 전송 및 저장되는 와중에 유출되거나, 이를 기반으로 학습된 모델이 추론 과정에서 서비스될 때 학습에 사용된 개인정보가 유출되는 등 사용자 개인정보보호가 심각한 사회문제로 대두되고 있다. 이번 수상의 기반이 된 '프라이버시가 보호되는 기계학습을 위한 컴퓨터 시스템 연구'는 대량의 데이터 사용이 필수적인 AI 모델 학습 과정에서, 개인정보나 민감한 사용자 데이터가 AI 모델의 학습이나 추론 과정에서 유출되지 않는 솔루션 개발에 활용될 수 있을 것으로 기대된다.
김범준 교수는 ‘동작 계획 및 작업 계획을 접목시킨 초거대 언어모델(Integrating large language models with geometric task and motion planning)' 이라는 주제로 기계학습 및 데이터마이닝 분야에서 수상했다. 현존하는 로봇들이 동작 계획이나 작업계획 중 한 가지만 달성할 수 있는 반면 작업 및 동작 계획 문제는 이 두 가지를 동시다발적으로 푸는 문제인데, 현재 이 분야 알고리즘들을 사용하기 위해서는 수많은 수작업이 들어간다. 최근 이런 수작업들을 초거대형 언어 모델로 대체할 수 있다는 가능성을 보여주는 연구 결과들이 나오기 시작했는데, 아직까지 이 방식들은 견실성(soundness)이나 정확성(correctness)를 보여주진 못하고 있다. 현 주제에서는 이런 연구 결과들과 기존에 쓰이던 작업 및 동작 계획법들을 효과적으로 결합하여 정확성(correctness)도 보장하고 수작업도 불필요한 알고리즘을 개발하는 것이 목표다.ᅠ
한편, 유민수 교수는 텍사스대학교 오스틴캠퍼스(University of Texas at Austin)에서 박사 학위를 받고 미국 엔비디아(NVIDIA) 본사 연구소 (2014-2017) 및 메타 인공지능 (Meta AI) 연구소 (2022-2023)에서 AI 컴퓨팅 가속을 위한 AI 반도체 및 AI 소프트웨어 시스템 연구를 주도해왔다. 지난 2018년부터는 우리 대학 전기및전자공학부에 교수로 재직 중이다. 김범준 교수는 메사추세츠공과대학(MIT)에서 2020년 박사 학위를 받고 같은 해부터 우리 대학 김재철AI대학원 교수로 재직중이다.
해당 수상에 관한 자세한 소식은 아래 웹사이트에서 확인할 수 있다.
https://research.google/outreach/research-scholar-program/recipients/?category=2023
우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single T
2023-09-21전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로
2023-07-25우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 기존의 반도체공정을 이용하여 고해상도로 패터닝할 수 있는 초기전도성이 확보된 액체금속 기반의 신축성 전도체 필름 제작 방법을 개발했다고 밝혔다. 신축성 전도체는 최근 각광받고 있는 사용자 친화형 웨어러블 소자, 신축성 디스플레이, 소프트 로봇의 전자 피부 개발에 핵심 요소로 여겨져 활발하게 연구가 진행되어왔다. 최근 신축성 전도체 중 하나로 높은 전기전도성과 신축성, 낮은 기계적 강성을 동시에 만족하고 안정성도 어느정도 확보가 된 갈륨기반의 액체금속 입자가 전도성 필러로 각광받고 있다. 하지만 액체금속 입자의 경우에는 기계적 불안정성으로 인하여 제한된 형태의 용액공정으로만 사용이 가능했기 때문에, 기존의 금속을 전자소자에 통합하는 방법인 반도체 공정을 이용하는 것이 어려웠다. 이런 이유로, 액체금속 입자 기반의 전자소자는 지금까지 연구실 수준에서 노즐 프린팅, 스크린 프린팅과 같은 제한된 방법으로
2023-07-17우리 대학 유창동 전기및전자공학부 교수가 회장을 맡은 한국인공지능학회 지난 11일 2022 송년회를 개최하고 인공지능의 학술적 발전에 기여한 기업과 연구자에게 시상했다. 최근 5년 간 영향력이 큰 논문을 쓴 연구자에게 주는 학술상은 김준모 KAIST 전기및전자공학부 교수, 주재걸 KAIST 김재철AI대학원 교수에게 수여됐다. 서민준 KAIST 김재철AI대학원 교수는 신진연구자상을 받았다. 또한, 인공지능 및 학회 발전에 세운 공로로 김광수·장동의 KAIST 전기및전자공학부 교수, 석흥일 고려대 인공지능학과 교수, 백승렬 유니스트 AI 대학원 교수, 주재걸 KAIST 김재철AI대학원 교수에게 학회공로상이 부상과 함께 주어졌다. 이번 시상식에서는 학술분야의 높은 성과와 함께 인공지능 개발과 응용에 앞장서 국내·외 협력 사업을 활성화고 학회와의 협력을 위해서 노력한 기업인들의 공로도 치하돼 배경훈 LG AI 연구원장, 하정우 네이버 AI 연구소장, 배순
2022-12-19우리 대학 전기및전자공학부 이성주 교수와 AI대학원 신진우 교수 연구팀이 공동연구를 통해 스스로 환경변화에 적응하는 테스트타임 적응 인공지능 기술을 개발했다고 밝혔다. 해당 연구는 “NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation”라는 제목으로 인공지능 분야 최고권위 국제학술대회 ‘신경정보처리시스템학회(NeurIPS) 2022'에서12월 발표될 예정이다. 이성주 교수와 신진우 교수 공동 연구팀이 스스로 새로운 환경에 적응하는 “테스트타임 적응 (Test-Time Adaptation)” 인공지능 기술을 개발하였다. 연구팀이 제안한 알고리즘은 기존의 최고 성능 알고리즘보다 평균 11% 향상된 정확도를 보였다. 기계학습 모델들의 한계점은 학습했던 데이터와 다른 분포의 데이터에 적용되면 성능이 급격히 하락한다는 것이다. 이를 푸는 여러 방법 중
2022-10-21