< (왼쪽부터) 전산학부 홍승훈 교수, 김동균 박사과정 >
우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다.
ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다.
홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다.
전산학부 김동균 박사과정(제1 저자), 김진우 박사과정, 조성웅 석사과정과 마이크로소프트 리서치 아시아(Microsoft Research Asia)의 총 루오 박사(Chong Lou)로 구성된 홍승훈 교수 연구팀은 컴퓨터 비전 분야의 핵심 연구 주제인 ‘픽셀 레이블링 문제'를 획기적으로 적은 수의 데이터로 광범위하게 해결할 수 있는 범용적 방법론인 비주얼 토큰 매칭(Visual Token Matching) 기법을 제안해 최우수논문상을 받았다.
< 그림 1. 연구 모식도 >
픽셀 레이블링은 물체 검출, 물체 분할, 자세 추정, 깊이 추정, 3차원 복원 등 컴퓨터 비전 분야의 거의 모든 핵심 문제를 광범위하게 아우르는 개념이다. 최근 10년간 신경망 기반의 기계학습 방법론이 적용되며 픽셀 레이블링의 다양한 세부 문제에서 괄목할만한 진전이 있었으나, 이러한 방법들은 수십만 개 이상의 방대한 학습 데이터를 요구하는 한계가 있었다.
홍승훈 교수 연구팀은 모든 종류의 픽셀 레이블링 문제에 대해 수십 개 이내의 적은 데이터로도 학습과 추론이 가능한 범용적인 퓨샷 학습 기법을 개발했고, 수많은 픽셀 레이블링 문제에서 기존 방법 대비 0.01% 이내의 데이터로도 비슷하거나 우수한 성능을 낼 수 있음을 입증했다.
홍 교수는 이번 연구를 통해 의료 영상과 같이 학습 데이터 수집이 병목이 되는 다양한 도메인에서 컴퓨터 비전 기술을 적용하는데 돌파구가 되기를 기대한다고 평가했다.
이번 연구를 주도한 김동균 박사과정은 적은 수의 데이터로 학습할 수 있는 범용적 기계학습 방법론을 계속 연구해 왔으며, 이번 연구의 이론적 토대가 되는 연구를 지난 ICLR에 출판한 바 있다. 김동균 박사과정은 이번 연구로 삼성 휴먼테크 논문대상에서 은상을 수상하기도 했다.
전산학부 홍승훈 교수는 "상을 받게 되어 영광이고, 이번 수상이 국내 기계학습 연구자들에게 자신감이 되어 한국에서 더 많은 도전적인 연구들이 나오는 데 도움이 된다면 기쁠 것 같다”라고 소감을 밝혔다.
강수량의 정확한 파악은 지구의 물 순환을 이해하고 수자원과 재해 대응을 위해 중요하다. 강수량 추정을 위한 알고리즘에는 다양한 방법들이 제안되어 왔으며, 최근에는 기계학습을 이용한 방법들이 많이 제안되고 있다. 우리 대학 문술미래전략대학원(건설및환경공학과 및 녹색성장지속가능대학원 겸임) 김형준 교수와 도쿄대 등으로 구성된 국제 공동연구팀이 인공위성에 탑재된 마이크로파 라디오미터의 관측값을 이용해 지상 강수량을 추정하는 새로운 기계학습 방법을 제안했다고 25일 밝혔다. 연구팀은 기존의 방법과 비교해 전 강수량에 대해 오차(RMSE)를 최소 15.9%에서 최대 42.5%까지 줄이는 데 성공했다. 단순한 데이터 주도(data-driven)모델은 대량의 훈련 데이터가 필요하고 물리적인 일관성이 보장되지 않으며 결과의 원인 분석이 어렵다는 등의 문제가 있었다. 연구팀은 이번 연구에서 위성 강수량 추정에 대한 분야 지식을 명시적으로 포함함으로써 학습 모델 내의 상호 의존적인 지식
2023-04-25우리 대학 뇌인지과학과 정재승 교수 연구팀이 인간의 뇌 신호를 해독해 장기간의 훈련 없이 생각만으로 로봇 팔을 원하는 방향으로 제어하는 뇌-기계 인터페이스 시스템을 개발했다고 24일 밝혔다. 서울의대 신경외과 정천기 교수 연구팀과 공동연구로 진행된 이번 연구에서 정 교수 연구팀은 뇌전증 환자를 대상으로 팔을 뻗는 동작을 상상할 때 관측되는 대뇌 피질 신호를 분석해 환자가 의도한 팔 움직임을 예측하는 팔 동작 방향 상상 뇌 신호 디코딩 기술을 개발했다. 이러한 디코딩 기술은 실제 움직임이나 복잡한 운동 상상이 필요하지 않기 때문에 운동장애를 겪는 환자가 장기간 훈련 없이도 자연스럽고 쉽게 로봇 팔을 제어할 수 있어 앞으로 다양한 의료기기에 폭넓게 적용되리라 기대된다. 바이오및뇌공학과 장상진 박사과정이 제1 저자로 참여한 이번 연구는 뇌공학 분야의 세계적인 국제 학술지 `저널 오브 뉴럴 엔지니어링 (Journal of Neural Engineering)' 9월 19권 5호에
2022-10-24우리 연구진이 오늘날 인공지능 딥러닝 모델들을 처리하기 위해 필수적으로 사용되는 기계학습 시스템을 세계 최고 수준의 성능으로 끌어올렸다. 우리 대학 전산학부 김민수 교수 연구팀이 딥러닝 모델을 비롯한 기계학습 모델을 학습하거나 추론하기 위해 필수적으로 사용되는 기계학습 시스템의 성능을 대폭 높일 수 있는 세계 최고 수준의 행렬 연산자 융합 기술(일명 FuseME)을 개발했다고 20일 밝혔다. 오늘날 광범위한 산업 분야들에서 사용되고 있는 딥러닝 모델들은 대부분 구글 텐서플로우(TensorFlow)나 IBM 시스템DS와 같은 기계학습 시스템을 이용해 처리되는데, 딥러닝 모델의 규모가 점점 더 커지고, 그 모델에 사용되는 데이터의 규모가 점점 더 커짐에 따라, 이들을 원활히 처리할 수 있는 고성능 기계학습 시스템에 대한 중요성도 점점 더 커지고 있다. 일반적으로 딥러닝 모델은 행렬 곱셈, 행렬 합, 행렬 집계 등의 많은 행렬 연산자들로 구성된 방향성 비순환 그래프(Dire
2022-06-20우리 대학 전기및전자공학부 한동수 교수 연구팀이 머신러닝(기계학습)에 기반한 *유전체 정렬 소프트웨어를 개발했다고 12일 밝혔다. ☞ 유전체(genome): 생명체가 가지고 있는 염기서열 정보의 총합이며, 유전자는 생물학적 특징을 발현하는 염기서열들을 지칭한다. 유전체를 한 권의 책이라고 비유하면 유전자는 공백을 제외한 모든 글자라고 비유할 수 있다. 차세대 염기서열 분석은 유전체 정보를 해독하는 방법으로 유전체를 무수히 많은 조각으로 잘라낸 후 각 조각을 참조 유전체(reference genome)에 기반해 조립하는 과정을 거친다. 조립된 유전체 정보는 암을 포함한 여러 질병의 예측과 맞춤형 치료, 백신 개발 등 다양한 분야에서 사용된다. 유전체 정렬 소프트웨어는 차세대 염기서열 분석 방법으로 생성한 유전체 조각 데이터를 온전한 유전체 정보로 조립하기 위해 사용되는 소프트웨어다. 유전체 정렬 작업에는 많은 연산이 들어가며, 속도를 높이고 비용을 낮추는 방법에 관한 관
2022-04-17우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 세계 최초로 그래프 기계학습 추론의 그래프처리, 그래프 샘플링 그리고 신경망 가속을 스토리지/SSD 장치 근처에서 수행하는 `전체론적 그래프 기반 신경망 기계학습 기술(이하 홀리스틱 GNN)'을 개발하는데 성공했다고 10일 밝혔다. 연구팀은 자체 제작한 프로그래밍 가능 반도체(FPGA)를 동반한 새로운 형태의 계산형 스토리지/SSD 시스템에 기계학습 전용 신경망 가속 하드웨어와 그래프 전용 처리 컨트롤러/소프트웨어를 시제작했다. 이는 이상적 상황에서 최신 고성능 엔비디아 GPU를 이용한 기계학습 가속 컴퓨팅 대비 7배의 속도 향상과 33배의 에너지 절약을 가져올 수 있다고 밝혔다. 그래프 자료구조가 적용된 새로운 기계학습 모델은 기존 신경망 기반 기계학습 기법들과 달리, 데이터 사이의 연관 관계를 표현할 수 있어 페이스북, 구글, 링크드인, 우버 등, 대규모 소셜 네트워크 서비스(S
2022-01-10