< (왼쪽부터) 생명화학공학과 이현주 교수, 이상엽 특훈교수 >
전 세계적으로 기후변화 문제가 심각해짐에 따라 이를 기후 위기로 인식하고 이에 대응하는 적극적인 관심과 노력이 요구되고 있다. 그중 이산화탄소를 활용해 재자원화하는 여러 방법 중에서 전기화학적 이산화탄소 전환 기술은 전기에너지를 이용해 이산화탄소를 유용한 화학물질로 전환할 수 있는 기술이다. 이는 설비 운용이 용이하고, 태양 전지나 풍력에 의해 생산된 재생 가능한 전기에너지를 이용할 수 있으므로 온실가스 감축 및 탄소 중립 달성에 기여하는 친환경 기술로 많은 관심을 받고 있다.
우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀이 전기화학적 이산화탄소 전환과 미생물 기반의 바이오 전환을 연계한 하이브리드 시스템을 개발해 이산화탄소로부터 높은 효율로 바이오 플라스틱을 생산하는 기술 개발에 성공했다고 30일 밝혔다. 유사한 시스템 대비 20배 이상의 세계 최고 생산성을 보여준 해당 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 3월 27일 字 온라인 게재됐다.
※ 논문명 : Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2
※ 저자 정보 : 이현주 (한국과학기술원, 교신저자), 이상엽(한국과학기술원, 교신저자), 임진규(한국과학기술원, 현 소속 기관 Stanford Linear Accelerator Center, 공동 제1저자), 최소영(한국과학기술원, 공동 제1저자), 이재원(한국과학기술원, 공동 제1저자) - 총 5명
이산화탄소의 효율적인 전환을 위해 고효율 전극 촉매 및 시스템 개발이 활발히 진행되고 있는데, 전환생성물로는 주로 탄소 1~3개의 화합물만이 제한적으로 생산되고 있다. 일산화탄소, 포름산, 에틸렌과 같은 탄소 1개의 화합물이 비교적 높은 효율로 생산되며, 이 밖에 에탄올, 아세트산, 프로판올과 같은 여러 개 탄소의 액상 화합물도 만들어질 수 있으나 이는 더 많은 전자를 필요로 하는 화학반응 특성상 전환 효율 및 생성물 선택성이 크게 낮다는 한계점이 있다.
이에 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀은 전기화학적 이산화탄소 전환 기술과 미생물을 이용한 바이오 전환 기술을 연계해 이산화탄소로부터 바이오 플라스틱을 생산하는 기술을 개발했다. 이 전기화학-바이오 하이브리드 시스템은 전기화학 전환반응이 일어나는 전해조와 미생물 배양이 이루어지는 발효조가 연결된 형태로, 전해조에서 이산화탄소가 포름산으로 전환되면, 이 포름산을 발효조에 공급해 커프리아비더스 네케이터(Cupriavidus necator)라는 미생물이 탄소원으로 섭취해 미생물 유래 바이오 플라스틱인 폴리하이드록시알카노에이트(polyhydroxyalkanoate, PHA)를 생산한다.
< 그림 1. 전기화학-바이오 하이브리드 시스템 모식도 및 사진 >
기존 이러한 하이브리드 콘셉트의 연구 결과에 따르면, 전기화학 반응의 낮은 효율 및 미생물 배양 조건과의 차이 등의 문제로 생산성이 매우 낮거나 비연속적 공정에 그친다는 단점이 있었다.
이를 극복하기 위해 공동연구팀은 기체 상태의 이산화탄소를 이용한 기체 확산 전극(gas diffusion electrode)으로 포름산을 만들었다. 그리고 미생물의 생장을 저해하지 않으면서도 전기화학 반응이 충분히 잘 일어나도록 하는 전해액이자 동시에 미생물 배양 배지로 이용할 수 있는 ‘생리적 호환 가능한 양극 전해액(physiologically compatible catholyte)’을 개발하여 별도의 분리 및 정제과정 없이 바로 미생물에게 공급하도록 했다. 이를 통해 이산화탄소로부터 만들어진 포름산을 포함하고 있는 전해액이 발효조로 들어가 미생물 배양에 쓰이고, 전해조로 들어가 순환되도록 하여 전해액과 남은 포름산의 활용을 극대화했다. 또한, 이 과정에서 필터를 설치해 전극 반응에 영향을 줄 수 있는 미생물이 걸러진 전해액만이 전해조로 공급되고 미생물은 발효조 안에만 존재하도록 하는 두 시스템이 잘 연계되면서도 효율적으로 작동되도록 설계했다.
개발한 하이브리드 시스템을 통해 이산화탄소로부터 세포 건조 중량의 83%에 달하는 높은 함량의 바이오 플라스틱(PHB)를 생산했으며, 이는 4 cm2 전극에서 1.38g의 PHB를 생산한 결과로 세계 최초 그램(g) 수준의 생산이며 기존 연구 대비 20배 이상의 생산성이다. 또한 해당 하이브리드 시스템은 연속 배양(continuous culture)의 가능성을 보여줌으로써 추후 다양한 산업공정으로의 응용 또한 기대된다.
교신저자인 이현주 교수와 이상엽 특훈교수는 “이번 연구 결과는 바이오 플라스틱뿐만 아니라 다양한 화학물질 생산에 응용될 수 있는 기술로서 앞으로 탄소 중립을 위한 핵심 기술로 많은 활용이 기대된다”라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 이산화탄소 저감 촉매 및 에너지 소자 기술 개발 과제, 불균일계 원자 촉매 제어 과제와 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
우리 대학이 글로벌 연구 협력을 통해 합성생물학(Engineering Biology) 분야 인재 양성, 합성생물학 및 바이오파운드리 기술 확보에 나선다. 우리 대학은 현지 시간으로 22일 오후 영국 임페리얼 칼리지 런던 화이트시티 캠퍼스 I-HUB(Imperial College London, Translation & Innovation Hub)에서 양국 간 공동연구센터 구축 및 합성생물학 인재 양성, 파견·초빙 등 인력교류, 공동연구를 통한 핵심기술 확보, 첨단바이오 신산업 육성 등을 위한 협력 협정을 체결했다. 윤석열 대통령의 영국 국빈방문을 계기로 체결된 이번 협력 협정에는 우리 대학과 함께 한국생명공학연구원(원장 김장성, KRIBB), 영국 임페리얼 칼리지 런던(Imperial College London), 영국 국립 합성생물학센터(SynbiCITE)가 참여한다. 우리 대학은 올해 공학생물학대학원(원장 조병관)을 설립하고 바이오+인공지능+공학이
2023-11-23의생명공학 연구에 일반적으로 사용되는 현미경 기술들은 염색이나 유전자 조작을 해야만 관찰할 수 있다는 한계가 있다. 하지만 염색이 된 세포들은 치료 목적으로 활용할 수 없어 세포나 조직을 살아있는 상태 그대로 관찰할 수 있는 홀로그래픽 현미경과 이를 체계적으로 분석할 수 있는 인공지능을 결합한 의생명공학 연구의 활용 방안 및 문제점에 대한 분석이 필요하다. 우리 대학 물리학과 박용근 교수 연구팀이 국제 학술지 `네이처 메소드(Nature Methods)'에 홀로그래픽 현미경과 인공지능 융합 연구 방법론을 조망한 견해 (perspective)를 게재했다고 14일 전했다. 연구팀은 기존 현미경 기술 대비 홀로그래픽 현미경의 이미지 복원 기술이 시간을 많이 필요하고 전처리 없이 세포나 조직을 찍을 수 있다는 장점이 있지만, 대신에 그만큼 결과물 분석에 많은 시간과 노력을 들여야 한다고도 분석했다. 박용근 교수 연구팀은 이런 문제점을 홀로그래픽 현미경과 인공지능과의 통합을 통해
2023-11-14우리 대학 바이오및뇌공학과의 김수지 석박통합과정(지도교수 박제균), 이기현 박사과정(지도교수 박제균)이 마이크로타스(μTAS) 2023 국제학회(The 27th International Conference on Miniaturized Systems for Chemistry and Life Sciences)에서 각각 ‘Springer Nature Best Oral Award First Place(최우수 논문 발표 1등상)’, ‘바이오마이크로플루이딕스 우수논문상(Biomicrofluidics Best Paper Award)’을 수상했다. μTAS 국제학회는 이번이 27회째로 미세유체기술을 포함하여 극소형 생물, 화학 분석시스템을 다루는 국제학술대회로 올해는 폴란드 카토비체에서 10월 15일부터 19일까지 5일간 열렸고 전세계 39개국에서 900여명이 참석했다. 2021년도 부터 구두발표 수상자를 배출한 ‘Sp
2023-10-24최근 25년간 노벨 생리의학상 수상자의 37%, 글로벌 상위 10개 제약회사 대표 과학책임자의 70%가 의사과학자다. 코로나를 겪으며 한국에서도 임상 현장과 최신 연구를 연결하는 가교 역할을 하는 의사과학자 양성이 더욱 절실해졌다. 우리 정부도 바이오·디지털헬스 글로벌 중심국가로의 도약을 위해 의사과학자 육성사업을 국정과제로 추진하고 있으며, 과학적 소양을 바탕으로 임상의 과제를 해결하는 의사과학자가 의료계와 바이오산업의 화두로 떠오르고 있다. 우리 대학은 글로벌 바이오헬스사업을 선두할 MD-데이터 공학자, AI 전문가 등의 의사공학자 양성을 위해 그간 추진해온 의과학대학원의 성공적인 운영을 12일 밝혔다. 이와 함께 그간의 성과를 바탕으로 바이오의료 분야에 특화된 과학자 및 공학자 양성을 위해 과학기술의학전문대학원을 설립할 계획이라고 밝혔다. 우리 대학은 2004년 의과학대학원을 설립하여 의사들이 첨단과학 연구역량을 습득할 수 있는 혁신적인 교육환경을 마련하
2023-09-12우리 대학이 이달 22일 미국 맨해튼 뉴욕대학교 킴멜센터에서 '2023 KAIST 테크페어 뉴욕(Tech Fair in New York)'을 개최한다. KAIST 창업 생태계를 세계 무대로 확산하는 출발점이자, 창업기업의 기술 가치를 현지에서 실증해 투자 유치 및 글로벌 고객을 확보하기 위해 마련된 행사다. 우리 대학은 2018년부터 매년 국내에서 기술이전 설명회를 열어왔으며, 해외에서 글로벌 기업을 대상으로 진행하는 테크페어는 올해가 처음이다. 기술가치창출원(원장 최성율)은 이번 행사를 위해 한국무역협회(대표 구자열, 이하 KITA)와 함께 지난 6개월간 시장 실증을 위한 고객사 및 투자사 발굴 등을 준비해 왔다. 교원·학생창업 기업을 중심으로 기술사업화된 7개사를 엄선해 이들 기술에 관심 있는 해외 기업을 세부적으로 연계했다. IT, 인공지능, 환경, 물류, 유통, 소매 분야 글로벌 다국적 기업이 수요기관으로 참여해 9월 현재 창업기업 기술의 시장성 여부를 테
2023-09-11