< 설명가능 인공지능 튜토리얼 포스터 >
인공지능(AI) 기술 발전과 활용 분야가 확대되면서 다양한 AI 기반 서비스들이 등장하고 있다. 하지만 실제로는 어떤 원리로 작동하는지 이해하기 어려워 이용자 입장에서는 막연하게 느껴질 때가 많다. 이 같은 상황에서 국내 대표적인 설명가능 인공지능 연구그룹인 KAIST 설명가능 인공지능연구센터 (센터장 최재식 교수) 연구진이 지난 1월 26일부터 2월 16일까지 7회에 걸쳐 ‘설명가능 인공지능 (XAI, Explainable Artificial Intelligence)’ 알고리즘, 평가기법, 툴 등 XAI 분야의 주요 기술을 총망라하여 소개하는 튜토리얼 시리즈를 개최했다. 이 행사에는 관련 분야 연구자뿐만 아니라 AI 기술기반 제품을 개발 중인 기업(성남시 소재) 관계자 약 130여명이 신청하여 XAI에 대해 높아진 관심을 알 수 있었다. 센터장 최재식 교수는 “AI기술을 활용하는 산업에서 필수로 자리잡게 될 XAI 분야 기반 기술에 대한 교육 프로그램을 제공하여 유관 연구기관 및 기업들이 성과를 높이는 데에 기여하고자 한다”고 행사 취지를 밝혔다.
이번 KAIST XAI 튜토리얼 시리즈엔 KAIST 설명가능 인공지능연구센터 소속 석박사과정 연구원 총 11명과 센터장 최재식 교수, 그리고 초청 연사로서 박우진 교수(서울대 산업공학과), 서민준 교수(KAIST 김재철AI대학원) 등 국내외 전문가들이 강연을 담당해 △다양한 XAI 알고리즘 △XAI 알고리즘의 평가기법과 툴 △사용자 중심 XAI 인터페이스 △대규모 언어모델 기반 추론 기술로 최근 주목을 받고 있는 Chain of Thoughts 등을 주제로 발표했다.
‘설명가능 인공지능’이란 기계학습 및 딥러닝 모델이 내놓은 결과에 대해 왜 그런 결과가 나온 것인지를 사람이 이해할 수 있는 방식으로 설명해주는 기술이다. 예를 들어, 자율주행차가 주행 중 장애물을 발견하여 급정거를 했을 때 왜 그런 판단을 했는지 사람에게 설명할 수 있어야 한다. 그래야 사고 위험을 줄일 수 있고 오작동 시 책임 소재도 가릴 수 있다. 최근 딥러닝 알고리즘의 성능이 향상되고 있지만 아직까지는 사용자들이 내부 로직에 대해 이해할 수 있는 설명을 제공하는 기술까지 적용된 사례는 많지 않다. 앞으로 다양한 산업분야에서 인공지능 기술을 도입함에 따라 적용된 AI기술에 대한 신뢰성과 투명성을 담보하기 위해서 반드시 함께 제공되어야 하는 것이 설명가능 인공지능 기술이라고 볼 수 있다.
KAIST 설명가능 인공지능연구센터 (http://xai.kaist.ac.kr)는 사람중심인공지능 핵심원천기술개발(R&D)사업의 일환으로 과학기술정보통신부와 정보통신기획평가원(IITP)의 후원으로 설립된 연구조직으로서 현재 KAIST 김재철AI대학원 성남연구센터에 자리잡고 있다. 튜토리얼 자료와 동영상은 KAIST 설명가능 인공지능연구센터 홈페이지에서 제공될 예정이다. (관련 문의: 김나리 교수(nari.kim@kaist.ac.kr))
우리 대학 설명가능인공지능 연구센터(센터장 최재식)가 'KCC 설명가능 인공지능(XAI) 워크숍 2024'를 지난달 27일 제주 국제컨벤션센터에서 개최했다.올해 3월 EU의 인공지능법이 최종 통과된 후 인공지능 시스템에 대한 글로벌 규제가 현실화 되고 인공지능 모델의 투명성 향상과 규제 준수를 지원할 수 있는 설명가능 인공지능(eXplainable Artificial Intelligence, 약칭 XAI) 기술에 대한 관심이 높아지고 있다. 이와 같은 시대적 흐름에 대응하기 위해 개최된 이번 워크숍에는 관련 분야에서 활발히 연구 중인 국내 연구기관과 기업 관계자들이 교류하며 최신 연구 동향을 공유했다.서홍석 교수(고려대)와 박천음 교수(한밭대)는 각각 '멀티모달 대화형 인공지능 관련 연구 동향'과 'Multimodal Counterfactual reasoning을 이용한 자연어 해석 연구 동향'을 주제로 최근 활발한 연구가 진행 중인 멀티모달 인공지능 모델 연구 및 해석 동향을
2024-07-08우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다. *멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자 최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다. AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나
2024-03-25우리 대학 설명가능 인공지능연구센터(센터장 최재식 교수)가 주관하여 ‘KCC 2023 설명가능 인공지능(XAI) 워크샵’을 6월 19일(월) 제주 오리엔탈호텔에서 개최했다. 본 워크샵은 ‘사람중심인공지능핵심원천기술개발’ 연구과제에 참여하고 있는 여러 대학 및 연구기관 연구진들의 기술교류 행사로, 설명가능 인공지능(eXplainable Artificial Intelligence, 이하 XAI) 연구 동향 및 참여기관별 연구 성과를 공유하고 연구진 간 교류를 확대하고자 하는 목적으로 개최되었다. XAI 기술은 인공지능 모델의 예측 및 생성 결과에 대한 근거를 인간이 이해할 수 있는 방식으로 설명하는 기술로서 최근 EU를 중심으로 AI 규제의 움직임이 구체화되는 상황에서 투명하고 신뢰할 수 있는 AI기술을 구현할 수 있는 기술로 주목 받고 있다. 정보통신기획평가원 이현규 PM의 환영사와 한국정보과학회 이원준 회장의 축사로 시작된 행사는 국
2023-07-01우리 대학 전기및전자공학부 윤찬현, 김주영 교수 연구팀이 설명 가능한 인공지능(eXplainable AI, XAI) 기법을 처리하기 위한 노이즈(잡음)에 강한 다중 피라미드 활성화 맵 기반 주의집중 구조가 탑재된 인공지능 칩을 설계하고, 삼성전자 DS부문의 지원으로 설명가능 뉴로프로세싱 유닛(이하 EPU, Explainable neuro-Processing Unit)을 개발했다고 24일 밝혔다. 설명가능 인공지능이란 사람이 이해할 수 있고 신뢰할 수 있는 설명을 제공할 수 있는 인공지능 기법이다. 기존의 수학적 알고리즘으로 학습되는 인공지능은 학습예제에 편향되어 신뢰할 수 없거나, 수천억개의 매개변수를 사람이 이해할 수 없다는 문제점을 해결하기 위해, 왜 인공지능이 특정 결과를 추론했는지 판단근거를 설명할 수 있도록 개발되었다. 설명가능한 인공지능은 어떤 이유에 의해서 인공지능의 의사결정에 큰 영향을 주었는지 설명할 수 있다는 점에서 기존의 인공지능보다 정확성, 공정성, 신뢰
2022-08-25우리 대학 인공지능연구센터(센터장 최호진)와 ㈜네비웍스(대표 원준희)는 인공지능 분야 기술개발의 공동연구를 위한 양해각서를 6월 2일 체결했다. 두 기관은 이번 양해각서 체결을 통해 (1)인공지능 분야 선행기술 연구개발을 위한 공동 연구 과제의 발굴 및 운영, (2)인공지능 분야 우수 인재 확보를 위한 추천 및 채용 연계 상호 협력, (3)그 외 인공지능 분야 기술 확보 사업 지원의 공동 목표 실현을 위해 필요한 사항 등을 협력할 계획이다. 우리 대학 전산학부는 ‘인간중심 컴퓨팅’이라는 비전 아래 50여 명의 교수진이 다양한 관련 교육 및 인공지능, 자연어 처리, 지식그래프 분야 기술로 소프트웨어공학 및 인간컴퓨터 상호작용 등 컴퓨터 공학 필수 분야와 시너지를 창출할 계획이다. ㈜네비웍스는 가상현실 교육훈련과 지능형 관제 서비스 전문 기업으로 2000년 설립되었다. 메타버스(Metaverse) 환경으로 진화하고 있는 비즈니스 환경에 맞춰 인간 삶의
2021-06-08