- 스스로 세정하는 초소수성 연꽃잎 구조를 생체모방한 최초의 나노입자 제조기술로 Nature와 Nature Nanotechnology에서 동시에 하이라이트
흙탕물 속에서도 아름답고 깨끗한 모습을 지키는 연꽃잎, 건조한 사막에서도 물 걱정 안 하는 딱정벌레, 영양분 공급 걱정 안 하는 끈끈이주걱, 물위를 자유자재로 걷는 소금쟁이, 물이 젖지 않는 나비날개는 모두 나노구조를 지니고 있어서 신기/한 생존현상을 만들어 낸다.
KAIST 생명화학공학과 양승만 교수팀(광자유체집적소자 창의연구단)은 연꽃잎 나노구조를 표면에 갖고 있는 미세입자를 균일한 크기로 연속적으로 생산하여 다양한 응용분야에 적용할 수 있는 기술을 개발해 최근 Nature와 Nature Nanotechnology등 해외 저명학술지로부터 크게 주목 받는 연구성과를 거뒀다.
국제적으로 가장 권위 있는 두 학술지에 동시에 하이라이트로 실린 것은 극히 이례적인 일로, 이 연구결과가 나노과학의 진보성과 실용성이 크게 이바지한 것임을 입증한다. 양 교수팀의 이번 연구는 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’의 지원을 받아 수행했다.
연꽃잎 나노구조로 발생하는 소위 연꽃잎효과(Lotus Effect)의 응용분야는 무궁무진하여 세계적인 연구그룹들이 활발히 개발 중이나 현재의 기술수준은 연꽃잎 효과를 지니는 실용성 있는 제품을 개발하는 데는 성공하지 못하고 있다.
Nature지(3월 25일호)와 Nature Nanotechnology지(4월호)가 비중 있게 하이라이트한 양 교수팀의 이번 연구에서는 감광성 액체방울을 이용하여 연꽃잎의 나노구조를 생체 모방하여 크기가 균일한 미세입자를 대량으로 만들 수 있는 기술을 성공적으로 개발하였다.
특히 주목할 것은 나노구슬이 스스로 구조를 형성하는 자기조립 원리를 이용함으로써 제조공정이 손쉽고 빨라 경제적이란 점이다(제조 공정도 참고). 우선 크기가 수백 나노미터인 균일한 유리구슬을 감광성 액체 속에 분산시킨 후, 크기가 수십 마이크로미터로 균일한 액체방울로 만들어 물에 주입하고, 물-감광성 액체-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬은 저절로 감광성 액체방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다.
이 때 자외선을 감광성 액체방울에 쪼여서 고형화 시킴으로써 수 천개의 유리 나노구슬이 박혀있는 입자를 얻게 된다. 그 후 유리구슬을 불산으로 녹여내면 마치 골프공 같이 분화구가 촘촘하게 파진 미세입자를 만들 수 있고 여기에 플라즈마(높은 에너지를 갖는 기체이온)를 쪼여주면 분화구가 깊게 깎이면서 연꽃잎과 같은 나노구조가 형성된다.
이러한 연꽃잎 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 나노식각공정을 사용하여 평판 위에 연꽃잎 효과를 구현한 결과는 보고된 바 있다. 그러나 본 연구의 결과는 머리카락 보다 가는 미세한 입자표면에 연꽃잎 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다.
Nature와 Nature Nanotechnology에서 언급한 바와 같이, 이렇게 제조된 연꽃잎 효과를 나타내는 미세입자의 응용은 다양하다. 세차가 필요없는 자동차, 김이 서리지 않는 유리, 비에 젖지 않는 섬유, 스스로 세정하는 페인트 그리고 비나 눈물에 얼룩이 지지 않는 화장품 등도 개발할 수 있다.
또한, 화학 및 바이오센서 등의 마이크로 분석소자, 물위를 걸을 수 있는 마이크로로봇, LCD 차세대 대형 디스플레이에서도 연꽃잎 효과를 이용한 코팅 기술이 사용될 것으로 기대된다.
이 연구결과는 화학분야 최고의 저명학술지인 안게반테 케미(Angewandte Chemie International Edition) 4월호 표지논문으로 하이라이트 되었고 연꽃잎 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 그 호의 VIP(Very Important Paper: 매우 중요한 논문)로 선정되었다.
특히, Nature지는 3월 25일호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 ‘표면과학: 물방울로 만든 구슬(Surface Science: Liquid Marbles)’이라는 제목으로 ‘뉴스와 논평(News & Views)’란에 하이라이트로 선정해 첨부한 자료와 같이 비중있게 게재했다.
또한, Nature Nanotechnology지는 4월호에서 ‘주목해야 할 연구(Research Highlights)’로 선정해 해설을 함께 실었다.
<그림1> 연꽃잎의 나노구조를 생체모방한 미세입자제조 공정모식도
<그림2> 연꽃잎의 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막은 유리 막대를 찔러도 뚫리지 않고 유리막대에 물이 묻지 않는다.
<그림3> Nature Nanotechnology에 실린 물 위에 뜬 물방울 사진: 연꽃잎 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막 위에 물을 뿌리면 방울로 맺히게 된다. 이것은 미세입자를 이용하면 물위로 물체를 띠울 수 있음을 보여준다.
<그림4> Nature에 실린 물방울로 만든 구슬을 집게로 잡고 있는 모습: 연꽃잎 나노구조를 갖는 미세입자가 물을 포획하여 물방울 구슬을 만든 모습. 이 물방울구슬은 집게로 찌그러트려도 안 터지며 떨어뜨려도 깨지지 않는다.
<그림5> 연꽃잎에 맺힌 물방울 사진과 나노구조의 전자현미경 사진과 봉우리의 모식도
<그림6> 사막의 딱정벌레와 나노구조의 전자현미경 사진
<그림7> 끈끈이 주걱과 나노구조의 전자현미경 사진
우리 대학 신소재공학과 김상욱 교수 연구팀이 부산대 안석균 교수 연구팀과 공동 연구를 통해 그래핀-액정 복합섬유를 이용한 새로운 인공 근육을 개발하는 데 성공했다고 5일 밝혔다. 이 인공 근육은 현재까지 과학계에 보고된 것 중에서 인간 근육과 가장 유사하면서도 최대 17배 강한 힘을 보이는 것으로 밝혀졌다. 동물의 근육은 신경 자극에 의해 그 형태가 변하면서 기계적인 운동을 일으키는 것으로 알려져 있다. 로봇이나 인공장기 등 다양한 분야에서 동물근육과 유사한 운동을 일으키기 위한 기술들이 개발돼왔으나, 지금까지는 주로 기계장치에 의존한 것들이 대부분이다. 최근에는 유연성을 가지는 신소재를 이용해 생명체의 근육같이 유연하면서도 기계적 운동을 일으킬 수 있는 인공 근육들이 연구되고 있다. 그러나 이들 대부분이 일으키는 운동의 범위가 동물 근육보다 제한되고 강한 운동을 일으키기 위해서는 마치 시계태엽을 감듯이 부가적인 에너지 저장과정을 거쳐야만 하는 문제점이 있다. 김교수
2022-12-05우리 연구진이 노화 및 치매 뇌에서 기억 중추인 해마 특이적으로 비정상적 별아교세포가 생겨나는 것을 최초로 관찰하고 그 원인을 규명했으며 이들은 신경 세포의 연결점인 시냅스의 숫자 및 기능 유지에 악영향을 줄 수 있음을 밝혔다. 이는 노화에 따른 인지 기능 저하를 일으키는 새로운 원인을 제시해 뇌 기능 회복에 활용이 기대된다. 우리 대학 생명과학과 정원석 교수와 이은별 박사, 정연주 박사 연구팀이 노화된 뇌에서 기존에 알려지지 않은 새로운 종류의 별아교세포를 발견했고, 이들이 세포 내 단백질 항상성이 손상돼 시냅스 생성 및 제거와 같은 기본적 능력이 결여돼있음을 밝혀 노화 관련 네이처 자매지인 `네이처 에이징(Nature Aging)'에 공개했다고 8일 밝혔다. 정원석 교수 연구팀은 이전 연구를 통해 비신경세포인 별아교세포가 신경세포의 시냅스를 만들 수도 또는 제거할 수도 있음을 밝힌 바 있다. 하지만, 이 같은 별아교세포의 기능이 노화 과정에서 어떻게 변화하는지는 알려지
2022-08-08우리 대학 신소재공학과 박찬범 교수와 정연식 교수 공동 연구팀이 한밭대학교(총장 최병욱) 오민욱 교수팀과 네덜란드 델프트 공과대학교(TU Delft) 프랭크 홀만(Frank Hollmann) 교수팀과의 협력을 통해 상온용 *열전소재 기반 열전 촉매반응과 산화환원 효소반응을 접목해 폐열로 고부가가치 화학물질을 합성하는 데 성공했다고 22일 밝혔다. ☞ 열전효과: 물질의 양단에 온도 차가 존재할 때 내부에 전위차가 생겨 전기가 발생하는 현상. 신소재공학과 윤재호, 장한휘 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션즈 (Nature `Communications)' 6월 29일 字에 게재됐다. (논문명: Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons) 전 세계적으로 1차 에너지 소비를 기준으로 약 70%의 에너지가 사용되지 못한 채 폐열(Waste
2022-07-22우리 대학 김재철 AI 대학원 예종철 교수 연구팀이 서울대학교 장성호 교수팀, 포스텍 김기현 교수팀과 공동연구를 통해 형광 현미경의 오랜 문제인 이방성(Anisotropy)을 해결해, 3차원 영상 화질을 획기적으로 끌어올리는 인공지능 기술을 개발했다고 29일 밝혔다. 이방성 문제란 형광 현미경으로 3차원 영상을 획득하는 데 있어 빛의 성질로 인해 영상 공간 방향 간에 적게는 2~3배, 많게는 10배까지도 화질 차이가 발생하는 문제를 뜻한다. 예를 들면 3차원 영상을 보는 각도마다 화질의 차이가 발생하는 것이다. 연구팀은 수학적 기법인 최적 수송이론 기반을 둔 새로운 인공지능 시스템을 개발해 공초점 현미경과 광 시트 현미경에 적용했다. 기존 인공지능 기법들과는 다르게, 인공지능 학습 데이터가 따로 필요하지 않고, 하나의 3차원 영상만으로도 인공지능 학습에 적용할 수 있다는 점에서 획기적이라 볼 수 있으며, 생물학 연구자들에게 생물 표본의 3차원 고화질 영상 획득에 큰 도움을
2022-06-29우리 대학 과학기술정책대학원 김소영 교수가 지난 2일 우리나라 과학정책 연구자 최초로 `네이처'의 월드 뷰 섹션에 한국의 기초과학 정책에 관한 기고문을 게재했다고 10일 밝혔다. 2022년은 UN이 선포한 세계기초과학의 해로서 동 기고문에서 김 교수는 그간의 기초과학 육성 정책을 되짚으며 예산 확대만이 아니라 기초과학의 내재적 가치와 과학자들의 내적 동기를 충분히 살리는 정책이 필요함을 역설했다. 우리나라는 기술추격 기반 경제성장에 성공한 이후 90년대부터 지식기반 혁신 선도를 위해 본격적인 기초과학 진흥에 나섰다. 우리나라는 1989년 기초연구진흥 및 기술개발 지원에 관한 법률(現 기초과학연구진흥법)을 필두로, 1990년 당시로서는 9년간 연 10억 원이라는 파격적인 규모의 선도연구센터 사업을 시작했고, 2011년 연구단별 연 100억 원 규모로 기초과학연구원을 설립했다. 또한 지난 정부는 과학기술 분야 주요 공약으로 기초연구 예산 2배 증액을 내세워 기초연구 예산이 `
2022-06-09