< NeurIPS 2022에서 학술 위원장을 맡은 오혜연 교수(왼쪽)과 기조강연자로 초청된 김주호 교수 >
우리 대학 연구진이 인공지능 분야에서 세계 최고의 권위를 자랑하는 신경정보처리시스템학회(이하, NeurIPS)에서 왕성한 연구 역량과 위상을 입증했다.
NeurIPS는 산업계와 학계에서 최신 인공지능 연구를 발표하는 권위 있는 국제학회다. 우리 대학은 2020년에 20편, 2021년에 45편의 논문을 발표했고, 올해도 작년 수준과 비슷한 37편을 게재해 인공지능 분야에서의 왕성한 연구 능력을 학계에 선보였다. 특히, 예종철 김재철AI대학원 교수의 논문(Energy-Based Contrastive Learning of Visual Representations)이 상위 6%만을 선정하는 구두 발표 논문으로 선정되어 질적으로도 우수한 연구 수준을 인정받았다.
이뿐만이 아니라 지난달 28일부터 미국 루이지애나주 뉴올리언스에서 열린 NeurIPS 2022 학회에서 우리 대학 교수진과 동문이 눈에 띄게 활약했다. 오혜연 전산학부 교수(KAIST 인공지능연구원 부원장)와 조경현 동문(KAIST 전산학부 학사 졸업)은 학술위원장 (Program chair)을, 안성진 전산학부 교수는 워크숍위원장(Workshop chair)을 맡았다. 김주호 전산학부 교수는 기조 강연자로 초청되어 ‘인터렉션 센트릭 AI(Interaction-Centric AI)’를 주제로 발표했다.
오혜연 교수는 “다수의 KAIST 연구진이 국제학회 조직위원 및 기조 강연자로 선정되었다는 것은 인공지능 연구 분야에서 KAIST의 위상이 세계적으로 높아졌음을 시사한다”라고 설명했다.
우리 대학 김재철AI대학원 윤세영 교수 연구팀이 세계 최고 수준의 인공지능(AI) 학회인 `뉴립스(NeurIPS, 신경정보처리시스템학회) 2022'에서 개최된 `세포 인식기술 경진대회'에서 취리히 리서치센터, 베이징대, 칭화대, 미시간대 등 다수의 세계 연구팀을 모두 제치고 1위로 우승을 달성했다고 28일 밝혔다. 뉴립스는 국제머신러닝학회(ICML), 표현학습국제학회(ICLR)와 함께 세계적인 권위의 기계학습 및 인공지능 분야 학회로 꼽힌다. 뛰어난 연구자들이 제출하는 논문들도 승인될 확률이 25%에 불과할 정도로 학회의 심사를 통과하기 어려운 것으로 알려져 있다. 윤세영 교수 연구팀은 이번 학회에서 `세포 인식기술 경진대회(Cell Segmentation Challenge)'에 참가했다. 이기훈(박사과정), 김상묵(박사과정), 김준기(석사과정)의 3명의 연구원으로 구성된 OSILAB 팀은 초고해상도의 현미경 이미지에서 인공지능이 자동으로 세포를 인식하는 MEDIAR(메디
2022-12-28우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스(Rutgers) 대학교와 공동연구를 통해 사람의 라벨링 없이 스스로 영상 속 객체를 식별할 수 있는 인공지능 기술을 개발했다고 1일 밝혔다. 이 모델은 복잡한 영상에서 각 장면의 객체들에 대한 명시적인 라벨링 없이도 객체를 식별하는 최초의 인공지능 모델이다. 기계가 주변 환경을 지능적으로 인지하고 추론하기 위해서는 시각적 장면을 구성하는 객체들과 그들의 관계를 파악하는 능력이 필수적이다. 하지만 이 분야의 연구는 대부분 영상의 각 픽셀에 대응하는 객체의 라벨을 사람이 일일이 표시해야 하는 지도적 학습 방식을 사용했다. 이 같은 수작업은 오류가 발생하기 쉽고 많은 시간과 비용을 요구한다는 단점이 있다. 이에 반해 이번에 연구팀이 개발한 기술은 인간과 유사하게 환경에 대한 관측만으로 객체의 개념을 스스로 자가 학습하는 방식을 취한다. 이렇게 인간의 지도 없이 스스로 객체의 개념을 학습할 수 있는 인공지능은 차세대 인지 기술
2022-12-02우리 대학 김재철AI대학원 최재식 교수(㈜인이지 대표이사) 연구팀이 인공지능 딥러닝의 의사결정에 큰 영향을 미치는 입력 변수의 기여도를 계산하는 세계 최고 수준의 기술을 개발했다고 23일 밝혔다. 최근 딥러닝 모델은 문서 자동 번역이나 자율 주행 등 실생활에 널리 보급되고 활용되는 추세 및 발전에도 불구하고 비선형적이고 복잡한 모델의 구조와 고차원의 입력 데이터로 인해 정확한 모델 예측의 근거를 제시하기 어렵다. 이처럼 부족한 설명성은 딥러닝이 국방, 의료, 금융과 같이 의사결정에 대한 근거가 필요한 중요한 작업에 대한 적용을 어렵게 한다. 따라서 적용 분야의 확장을 위해 딥러닝의 부족한 설명성은 반드시 해결해야 할 문제다. 최교수 연구팀은 딥러닝 모델이 국소적인 입력 공간에서 보이는 입력 데이터와 예측 사이의 관계를 기반으로, 입력 데이터의 특징 중 모델 예측의 기여도가 높은 특징만을 점진적으로 추출해나가는 알고리즘과 그 과정에서의 입력과 예측 사이의 관계를 종합하는 방법
2022-11-23우리 대학 전기및전자공학부 이성주 교수와 AI대학원 신진우 교수 연구팀이 공동연구를 통해 스스로 환경변화에 적응하는 테스트타임 적응 인공지능 기술을 개발했다고 밝혔다. 해당 연구는 “NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation”라는 제목으로 인공지능 분야 최고권위 국제학술대회 ‘신경정보처리시스템학회(NeurIPS) 2022'에서12월 발표될 예정이다. 이성주 교수와 신진우 교수 공동 연구팀이 스스로 새로운 환경에 적응하는 “테스트타임 적응 (Test-Time Adaptation)” 인공지능 기술을 개발하였다. 연구팀이 제안한 알고리즘은 기존의 최고 성능 알고리즘보다 평균 11% 향상된 정확도를 보였다. 기계학습 모델들의 한계점은 학습했던 데이터와 다른 분포의 데이터에 적용되면 성능이 급격히 하락한다는 것이다. 이를 푸는 여러 방법 중
2022-10-21우리 대학 조천식모빌리티대학원 공승현 교수 연구팀이 세계 최초로 악천후 상황에서 안정적인 자율주행을 가능하게 하는 4D 레이더(Radar)의 주변 객체 인지 인공지능 기술을 개발했다고 20일 밝혔다. 연구팀은 구축된 인공지능 학습 데이터셋(Dataset)인 KAIST-레이더(이하 K-레이더)와 개발된 인공지능 신경망(RTN4D) 그리고 전 세계 연구자를 위한 4D 레이더 인공지능 개발 플랫폼(Platform)과 관련 벤치마크(Benchmark)를 모두 공개한다고 밝혔다. 현재 전 세계적으로 개발되고 있는 자율주행 자동차는 주로 카메라와 라이다(LiDAR)에서 출력되는 이미지와 포인트 클라우드(Pointcloud) 데이터를 적절한 인공지능 신경망으로 처리해 자동차 주변의 객체들을 인식하는 방식으로 구현돼 있다. 그러나 카메라와 라이다는 각각 가시광선과 적외선을 사용하므로 눈비 또는 안개 상황에서 측정 성능이 크게 떨어지는데, 이로 인해 주변 객체들에 대한 인식이 어려워져 안전한
2022-10-20