〈18일 오전 열린 KAIST 융합기초학부 설치 기념식에 참석한 내빈들이 테이프 커팅을 하고 있다. (왼쪽에서 다섯번째가 신성철 총장)〉
우리 대학이 18일 오전 11시부터 대전 본원 행정 분관(N2)과 대강당(E15) 건물에서 각각 ‘융합기초학부’설치를 기념하는 행사를 가졌다.
‘융합기초학부’는 KAIST가 전문적인 역량뿐만 아니라 초학문적인 사고력을 갖춘 지식창조형 인재 양성을 목표로 설치한 새로운 학부 교육 과정이다.
특히 학생 스스로가 자신이 원하는 진로·관심 분야에 따라 개인맞춤형으로 전공 교과목을 직접 설계해서 공부한다는 게‘융합기초학부’의 가장 큰 특징이다.
KAIST는 내년 3월부터 ‘융합기초학부’를 본격 운영할 방침인데 이를 위해 오는 11월에 1학년인 새내기과정 학생들을 대상으로 학생 모집에 나설 계획이다.
이날 기념행사에는 신성철 총장을 비롯해 이광형 교학부총장·박현욱 연구부총장·채수찬 대외부총장·김종득 융합기초학부 설립추진단장 등 주요 보직 교수와 학생·교직원 등 200여 명이 참석했다.
행사는 ‘융합기초학부’가 설치된 행정 분관(N2)에서 현판식 및 테이프 커팅식, 기념사진 촬영 등의 순으로 진행됐다.
대강당(E15)으로 자리를 옮겨 치러진 2부 행사에서는 신성철 총장의 ‘21C 미래사회에서 KAIST 새로운 역할과 준비’를 주제로 한 기념 강연에 이어 전기및전자공학부 이용훈 교수와 글로벌산학협력연구센터 배종성 교수가 각각 ‘최신교육은 현장(Co-op)에 있다’와 ‘이제 쌍방향 실시간 교육이다’라는 주제로 발표를 했다.
이와 함께 박현욱 연구부총장은 ‘융합연구, 미래의 먹거리를 만든다’라는 발표를 통해 4차 산업혁명 시대의 미래 융합연구에 대한 중요성과 새로운 흐름을 소개했다.
마지막으로 김종득 융합기초학부 설립추진단장이 ‘융합기초학부는 이런 일을 한다’라는 주제의 특강을 통해 융합기초학부의 설립 배경과 추진 경과, 학사운영 및 교육 방향 등에 관해 자세히 소개하는 시간을 가졌다.
‘융합기초학부’ 설치를 계기로 KAIST 학사조직은 기존 5개 단과대학, 6개 학부, 27개 학과에서 5개 단과대학, 7개 학부, 27개 학과체계로 1개 학부가 늘어나게 됐다.
KAIST는 최근 ‘융합기초학부’학생에게 기초교육과 현장학습을 기반으로 사회와 대학원에서 융합적 연구 주제를 소화하고 다양하고 복잡한 문제를 창의적으로 해결하는 역량을 길러주기 위해 융합기초 교과목 6개, 중점분야별 전문 교과목군 8개와 인공지능(AI) 교육을 바탕으로 구성한 교과과정 설계를 마쳤다.
학문 사이의 경계를 허물 6개 융합기초 교과목은 ▲융합학문을 위한 기초 현대 물리 ▲유기화학 반응의 기초 ▲분자생물학과 유전체의 이해 ▲응용수리모델링 ▲초학제 간 데이터 구성 ▲경영자를 위한 경제학 등이다.
또 중점 교과목군은 ▲데이터 및 AI ▲기계 및 정밀 ▲헬스케어 ▲에너지 및 환경 ▲소재 및 물질 ▲스마트시티·라이프 ▲문화·미디어 ▲경영 ·창업 등 모두 8개로 이뤄졌다.
이들 교과과정은 학생의 관심 주제와 연계해 개인맞춤형 교과목 형태로 운영되며 멘토 교수로부터 교과목 설계와 진로 상담에 관한 조언을 받을 수 있다.
1학년 과정을 포함해 총 136학점 이상을 이수한 학생은 자신이 선택한 교과과정에 따라 ▲공학사 ▲이학사 ▲융합공학사 ▲융합이학사 등 4개의 학위 가운데 하나를 선택해 받을 수 있다.
한편 신성철 총장은 이날 기념 강연에서 “KAIST는 연구중심대학으로서 그동안 학문적 깊이와 다양성을 지향해왔고 또 국가가 필요한 우수 이공계 인재 양성의 선도적 역할을 수행해왔다”며 “4차 산업혁명 시대의 핵심기술인 IoT·클라우드·빅데이터·5G·AI 등 신산업과 혁신 창업을 주도하는 미래 융합형 인재 양성을 통해 국가경제발전과 인류사회 번영에 기여할 것”이라고 강조했다.
신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다. 모더나 및 바이오엔텍은 암 치료를 위한 신생항원 백신용으로 개발하던 mRNA 플랫폼을 사용해 COVID-19 백신을 성공적으로 개발한 바 있으며, 현재 대규모 제약회사들과 함께 신생항원 암 백신 임상시험을 진행하고 있다. 이런 암 백신 개발을 위해 핵심적인 단계인 환자 맞춤형 신생항원 발굴에 활용될 인공지능 플랫폼이 개발되어 화제다. 우리 대학 바이오및뇌공학과 최정균 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다. 최정균 교수 연구팀은 딥러닝을 이용해 실제로 T 세포 면역반응을 유도할 수 있는 신생항원을 발굴하는 AI 모델을 개발했으며, 연구자들이 손쉽게 활용할 수 있는 웹서비스를 구축해 DeepNeo라는
2023-05-17우리 대학 김재철AI대학원(원장 정송)과 기술가치창출원(원장 최성율)이 공동 주관하여 ‘KAIST AI기술설명회 2023’을 5월 12일(금) 서울 COEX에서 개최했다. 오전 세션에서는 최근 사회에 큰 파장을 일으키고 있는 생성 AI분야의 양대 주제인 영상생성 모델 (Diffusion Model)과 대형 언어생성 모델 (ChatGPT 등)에 대해 우리 대학 김재철AI대학원 예종철 교수, 서민준 교수가 각각 튜토리얼을 진행했다. 또한 인공지능 기술을 사용하여 산업설비의 에너지 비용을 절감한 사례에 대해 최재식 교수가 발표했다. 이어서 KAIST 기술이전 절차(지식재산 및 기술이전센터 김권 센터장)와 KAIST 장기 기업자문 특화 플랫폼인 ILP 프로그램(산학협력센터 김성완 센터장)에 대해서 일반에 소개하는 자리를 가졌다. 기술소개 세션 1부에서는 ▲자기 피드백을 활용한 고성능 챗봇 개발 기술(서민준 교수) ▲대형 언어모델 교사를 활용한 소형 추론 모델
2023-05-15우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다. ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다. 홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다. 전산학부 김동균 박사과정(제1 저자), 김진우 박사과
2023-05-08다공성 소재는 넓은 공극과 표면 면적을 지니고 있어, 가스 흡착, 분리, 촉매 등 다양한 에너지 및 환경 분야에서 적용된다. 다공성 소재 중 한 종류인 금속 유기 골격체(MOF)는 무한대에 가까운 경우의 수를 갖는 넓은 물질 공간(materials space) 안에 존재하기에, 인공지능을 사용해 최적의 물질을 추출하고 특성을 예측하려는 연구가 활발히 진행되고 있다. 하지만 이러한 모델들은 대부분 특정한 물성 한 종류만 학습할 수 있으며, 모든 재료 특성에 보편적으로 적용할 수 없다는 단점이 존재한다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 세계 최초로 멀티모달 트랜스포머를 적용한 인공지능(AI)을 통해 다공성 소재의 다양한 물성을 예측하는 기술을 개발했다고 5일 밝혔다. 멀티모달 트랜스포머는 비디오 프레임과 오디오 트랙, 웹 이미지와 캡션, 교육용 비디오와 음성 대본과 같이 서로 다른 형태의 정보를 효과적이고 효율적으로 결합하도록 설계된 신경망 모델의 일종이다. 김
2023-04-05국가 필수전략기술이면서 디지털바이오 분야의 핵심이라 할 수 있는 합성생물학 분야로 알려진 공학생물학(Engineering Biology)은 생명과학에 공학적 기술개념을 도입하여 인공적으로 생명체의 구성요소·시스템을 설계·제작·합성할 수 있는 미래가 주목하는 학문·기술 분야이다. 우리 대학은 `공학생물학대학원(Graduate School of Engineering Biology)'을 설립하고 공학과 생명과학의 최신 융합 분야에서 세계적인 연구 및 교육 혁신의 교두보 역할을 하겠다고 17일 밝혔다. 공학생물학은 바이오 R&D와 디지털·AI·로봇자동화 기술의 융합으로 고속·대량·저비용화를 실현하고, 기존 바이오 기술의 한계를 극복하며 환경·의약·화학·에너지 등 전방위적 산업적 활용과 막대한 시장 창출이 전망되는 분야다. 지금은 인공
2023-03-17